File size: 3,615 Bytes
7b0adee 44f0668 7b0adee c20a82b 7b0adee 04c6814 2527697 04c6814 b46fda5 fb72213 8a54bba fb72213 7b0adee 04c6814 7b0adee 44f0668 7b0adee 44f0668 7b0adee c20a82b 7b0adee c20a82b 7b0adee 04c6814 7b0adee 04c6814 7b0adee c20a82b 7b0adee c20a82b 7b0adee 3a1ba74 7b0adee 3a1ba74 c20a82b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import streamlit as st
from streamlit_chat import message
from langchain_openai import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import (ConversationBufferMemory,
ConversationSummaryMemory,
ConversationBufferWindowMemory
)
if 'conversation' not in st.session_state:
st.session_state['conversation'] =None
if 'messages' not in st.session_state:
st.session_state['messages'] =[]
if 'API_Key' not in st.session_state:
st.session_state['API_Key'] =''
# Setting page title and header
st.set_page_config(page_title="ChatMate: Your Professional AI Conversation Partner Solution", page_icon=":robot_face:")
st.markdown("<h1 style='text-align: center; color: navy;'>ChatMate: Your Professional AI Partner</h1>", unsafe_allow_html=True)
st.markdown("<h4 style='text-align: center;'>Interact with a cutting-edge language model</h4>", unsafe_allow_html=True)
# API Keys
# st.sidebar.text_input() will automatically update st.session_state['API_Key'] with the input value whenever the user types into the field.
st.sidebar.title("🔑")
st.session_state['API_Key']= st.sidebar.text_input("Enter your OpenAI API Key here please.",type="password")
# summarise_button = st.sidebar.button("Summarise the conversation", key="summarise")
#if summarise_button:
# summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️")
# Function to get response from the model
def getresponse(userInput, api_key):
if st.session_state['conversation'] is None:
llm = ChatOpenAI(
temperature=0,
openai_api_key=api_key,
model_name='gpt-3.5-turbo'
)
st.session_state['conversation'] = ConversationChain(
llm=llm,
verbose=True,
memory=ConversationSummaryMemory(llm=llm)
)
response=st.session_state['conversation'].predict(input=userInput)
print(st.session_state['conversation'].memory.buffer)
return response
response_container = st.container()
# Here we will have a container for user input text box
container = st.container()
# User input and response display
with container:
with st.form(key='my_form', clear_on_submit=True):
user_input = st.text_area("Ask a question:", key='input', height=100)
submit_button = st.form_submit_button(label='Send')
if submit_button:
st.session_state['messages'].append(user_input)
model_response=getresponse(user_input,st.session_state['API_Key'])
st.session_state['messages'].append(model_response)
# with response_container:
# for i in range(len(st.session_state['messages'])):
# if (i % 2) == 0:
# message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user')
# else:
# message(st.session_state['messages'][i], key=str(i) + '_AI')
with response_container:
for i in range(len(st.session_state['messages'])):
if (i % 2) == 0:
message(st.session_state['messages'][i], is_user=True, user_icon='<i class="fas fa-user-tie"></i>', key=str(i) + '_user')
else:
message(st.session_state['messages'][i], bot_icon='<i class="fas fa-robot"></i>', key=str(i) + '_AI')
|