HEAT / utils /image_utils.py
Egrt's picture
init
424188c
raw
history blame
8.28 kB
import math
from io import BytesIO
import cv2
import matplotlib.pyplot as plt
import numpy as np
import skimage.draw
from PIL import Image
def get_image_size(filepath):
im = Image.open(filepath)
return im.size
def load_image(image_filepath):
image = Image.open(image_filepath)
image.load()
image_array = np.array(image, dtype=np.uint8)
image.close()
return image_array
def padded_boundingbox(boundingbox, padding):
boundingbox_new = np.empty_like(boundingbox)
boundingbox_new[0:2] = boundingbox[0:2] + padding
boundingbox_new[2:4] = boundingbox[2:4] - padding
return boundingbox_new
def center_bbox(spatial_shape, output_shape):
"""
Return a bbox centered in spatial_shape with size output_shape
:param spatial_shape:
:param output_shape:
:return:
"""
center = (spatial_shape[0] / 2, spatial_shape[1] / 2)
half_output_shape = (output_shape[0] / 2, output_shape[1] / 2)
bbox = [center[0] - half_output_shape[0], center[1] - half_output_shape[1], center[0] + half_output_shape[0], center[1] + half_output_shape[1]]
bbox = bbox_to_int(bbox)
return bbox
def bbox_add_margin(bbox, margin):
bbox_new = bbox.copy()
bbox_new[0:2] -= margin
bbox_new[2:4] += margin
return bbox_new
def bbox_to_int(bbox):
bbox_new = [
int(np.floor(bbox[0])),
int(np.floor(bbox[1])),
int(np.ceil(bbox[2])),
int(np.ceil(bbox[3])),
]
return bbox_new
def draw_line_aa_in_patch(edge, patch_bounds):
rr, cc, prob = skimage.draw.line_aa(edge[0][0], edge[0][1], edge[1][0], edge[1][1])
keep_mask = (patch_bounds[0] <= rr) & (rr < patch_bounds[2]) \
& (patch_bounds[1] <= cc) & (cc < patch_bounds[3])
rr = rr[keep_mask]
cc = cc[keep_mask]
prob = prob[keep_mask]
return rr, cc, prob
def convert_array_to_jpg_bytes(image_array, mode=None):
img = Image.fromarray(image_array, mode=mode)
output = BytesIO()
img.save(output, format="JPEG", quality=90)
contents = output.getvalue()
output.close()
return contents
def displacement_map_to_transformation_maps(disp_field_map):
disp_field_map = disp_field_map.astype(np.float32)
i = np.arange(disp_field_map.shape[0], dtype=np.float32)
j = np.arange(disp_field_map.shape[1], dtype=np.float32)
iv, jv = np.meshgrid(i, j, indexing="ij")
reverse_map_i = iv + disp_field_map[:, :, 1]
reverse_map_j = jv + disp_field_map[:, :, 0]
return reverse_map_i, reverse_map_j
def apply_displacement_field_to_image(image, disp_field_map):
trans_map_i, trans_map_j = displacement_map_to_transformation_maps(disp_field_map)
misaligned_image = cv2.remap(image, trans_map_j, trans_map_i, cv2.INTER_CUBIC)
return misaligned_image
def apply_displacement_fields_to_image(image, disp_field_maps):
disp_field_map_count = disp_field_maps.shape[0]
misaligned_image_list = []
for i in range(disp_field_map_count):
misaligned_image = apply_displacement_field_to_image(image, disp_field_maps[i, :, :, :])
misaligned_image_list.append(misaligned_image)
return misaligned_image_list
def get_axis_patch_count(length, stride, patch_res):
total_double_padding = patch_res - stride
patch_count = max(1, int(math.ceil((length - total_double_padding) / stride)))
return patch_count
def compute_patch_boundingboxes(image_size, stride, patch_res):
"""
@param image_size:
@param stride:
@param patch_res:
@return: [[row_start, col_start, row_end, col_end], ...]
"""
im_rows = image_size[0]
im_cols = image_size[1]
row_patch_count = get_axis_patch_count(im_rows, stride, patch_res)
col_patch_count = get_axis_patch_count(im_cols, stride, patch_res)
patch_boundingboxes = []
for i in range(0, row_patch_count):
if i < row_patch_count - 1:
row_slice_begin = i * stride
row_slice_end = row_slice_begin + patch_res
else:
row_slice_end = im_rows
row_slice_begin = row_slice_end - patch_res
for j in range(0, col_patch_count):
if j < col_patch_count - 1:
col_slice_begin = j*stride
col_slice_end = col_slice_begin + patch_res
else:
col_slice_end = im_cols
col_slice_begin = col_slice_end - patch_res
patch_boundingbox = np.array([row_slice_begin, col_slice_begin, row_slice_end, col_slice_end], dtype=np.int32)
assert row_slice_end - row_slice_begin == col_slice_end - col_slice_begin == patch_res, "ERROR: patch does not have the requested shape"
patch_boundingboxes.append(patch_boundingbox)
return patch_boundingboxes
def clip_boundingbox(boundingbox, clip_list):
assert len(boundingbox) == len(clip_list), "len(boundingbox) should be equal to len(clip_values)"
clipped_boundingbox = []
for bb_value, clip in zip(boundingbox[:2], clip_list[:2]):
clipped_value = max(clip, bb_value)
clipped_boundingbox.append(clipped_value)
for bb_value, clip in zip(boundingbox[2:], clip_list[2:]):
clipped_value = min(clip, bb_value)
clipped_boundingbox.append(clipped_value)
return clipped_boundingbox
def crop_or_pad_image_with_boundingbox(image, patch_boundingbox):
im_rows = image.shape[0]
im_cols = image.shape[1]
row_padding_before = max(0, - patch_boundingbox[0])
col_padding_before = max(0, - patch_boundingbox[1])
row_padding_after = max(0, patch_boundingbox[2] - im_rows)
col_padding_after = max(0, patch_boundingbox[3] - im_cols)
# Center padding:
row_padding = row_padding_before + row_padding_after
col_padding = col_padding_before + col_padding_after
row_padding_before = row_padding // 2
col_padding_before = col_padding // 2
row_padding_after = row_padding - row_padding // 2
col_padding_after = col_padding - col_padding // 2
clipped_patch_boundingbox = clip_boundingbox(patch_boundingbox, [0, 0, im_rows, im_cols])
if len(image.shape) == 2:
patch = image[clipped_patch_boundingbox[0]:clipped_patch_boundingbox[2], clipped_patch_boundingbox[1]:clipped_patch_boundingbox[3]]
patch = np.pad(patch, [(row_padding_before, row_padding_after), (col_padding_before, col_padding_after)], mode="constant")
elif len(image.shape) == 3:
patch = image[clipped_patch_boundingbox[0]:clipped_patch_boundingbox[2], clipped_patch_boundingbox[1]:clipped_patch_boundingbox[3], :]
patch = np.pad(patch, [(row_padding_before, row_padding_after), (col_padding_before, col_padding_after), (0, 0)], mode="constant")
else:
print("Image input does not have the right shape/")
patch = None
return patch
def make_grid(images, padding=2, pad_value=0, return_offsets=False):
nmaps = images.shape[0]
ymaps = int(math.floor(math.sqrt(nmaps)))
xmaps = nmaps // ymaps
height, width = int(images.shape[1] + padding), int(images.shape[2] + padding)
grid = np.zeros((height * ymaps + padding, width * xmaps + padding, images.shape[3])) + pad_value
k = 0
offsets = []
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
x_offset = x * width + padding
y_offset = y * height + padding
grid[y * height + padding:(y+1) * height, x * width + padding:(x+1) * width, :] = images[k]
offsets.append((x_offset, y_offset))
k = k + 1
if return_offsets:
return grid, offsets
else:
return grid
if __name__ == "__main__":
im_rows = 5
im_cols = 10
stride = 1
patch_res = 15
image = np.random.randint(0, 256, size=(im_rows, im_cols, 3), dtype=np.uint8)
image = Image.fromarray(image)
image = np.array(image)
plt.ion()
plt.figure(1)
plt.imshow(image)
plt.show()
# Cut patches
patch_boundingboxes = compute_patch_boundingboxes(image.shape[0:2], stride, patch_res)
plt.figure(2)
for patch_boundingbox in patch_boundingboxes:
patch = crop_or_pad_image_with_boundingbox(image, patch_boundingbox)
plt.imshow(patch)
plt.show()
input("Press <Enter> to finish...")