File size: 8,217 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import numpy as np
import pickle
import cv2
from metrics.new_utils import *


class Metric():
    def calc(self, gt_data, conv_data, thresh=8.0, iou_thresh=0.7):
        ### compute corners precision/recall
        gts = gt_data['corners']
        dets = conv_data['corners']

        per_sample_corner_tp = 0.0
        per_sample_corner_fp = 0.0
        per_sample_corner_length = gts.shape[0]
        found = [False] * gts.shape[0]
        c_det_annot = {}


        # for each corner detection
        for i, det in enumerate(dets):
            # get closest gt
            near_gt = [0, 999999.0, (0.0, 0.0)]
            for k, gt in enumerate(gts):
                dist = np.linalg.norm(gt - det)
                if dist < near_gt[1]:
                    near_gt = [k, dist, gt]
            if near_gt[1] <= thresh and not found[near_gt[0]]:
                per_sample_corner_tp += 1.0
                found[near_gt[0]] = True
                c_det_annot[i] = near_gt[0]
            else:
                per_sample_corner_fp += 1.0

        per_corner_score = {
            'recall': per_sample_corner_tp / gts.shape[0],
            'precision': per_sample_corner_tp / (per_sample_corner_tp + per_sample_corner_fp + 1e-8)
        }

        ### compute edges precision/recall
        per_sample_edge_tp = 0.0
        per_sample_edge_fp = 0.0
        edge_corner_annots = gt_data['edges']
        per_sample_edge_length = edge_corner_annots.shape[0]

        false_edge_ids = []
        match_gt_ids = set()

        for l, e_det in enumerate(conv_data['edges']):
            c1, c2 = e_det

            # check if corners are mapped
            if (c1 not in c_det_annot.keys()) or (c2 not in c_det_annot.keys()):
                per_sample_edge_fp += 1.0
                false_edge_ids.append(l)
                continue
            # check hit
            c1_prime = c_det_annot[c1]
            c2_prime = c_det_annot[c2]
            is_hit = False

            for k, e_annot in enumerate(edge_corner_annots):
                c3, c4 = e_annot
                if ((c1_prime == c3) and (c2_prime == c4)) or ((c1_prime == c4) and (c2_prime == c3)):
                    is_hit = True
                    match_gt_ids.add(k)
                    break

            # hit
            if is_hit:
                per_sample_edge_tp += 1.0
            else:
                per_sample_edge_fp += 1.0
                false_edge_ids.append(l)

        per_edge_score = {
            'recall': per_sample_edge_tp / edge_corner_annots.shape[0],
            'precision': per_sample_edge_tp / (per_sample_edge_tp + per_sample_edge_fp + 1e-8)
        }

        # computer regions precision/recall
        conv_mask = render(corners=conv_data['corners'], edges=conv_data['edges'], render_pad=0, edge_linewidth=1)[0]
        conv_mask = 1 - conv_mask
        conv_mask = conv_mask.astype(np.uint8)
        labels, region_mask = cv2.connectedComponents(conv_mask, connectivity=4)

        #cv2.imwrite('mask-pred.png', region_mask.astype(np.uint8) * 20)

        background_label = region_mask[0, 0]
        all_conv_masks = []
        for region_i in range(1, labels):
            if region_i == background_label:
                continue
            the_region = region_mask == region_i
            if the_region.sum() < 20:
                continue
            all_conv_masks.append(the_region)

        gt_mask = render(corners=gt_data['corners'], edges=gt_data['edges'], render_pad=0, edge_linewidth=1)[0]
        gt_mask = 1 - gt_mask
        gt_mask = gt_mask.astype(np.uint8)
        labels, region_mask = cv2.connectedComponents(gt_mask, connectivity=4)

        #cv2.imwrite('mask-gt.png', region_mask.astype(np.uint8) * 20)

        background_label = region_mask[0, 0]
        all_gt_masks = []
        for region_i in range(1, labels):
            if region_i == background_label:
                continue
            the_region = region_mask == region_i
            if the_region.sum() < 20:
                continue
            all_gt_masks.append(the_region)

        per_sample_region_tp = 0.0
        per_sample_region_fp = 0.0
        per_sample_region_length = len(all_gt_masks)
        found = [False] * len(all_gt_masks)
        for i, r_det in enumerate(all_conv_masks):
            # gt closest gt
            near_gt = [0, 0, None]
            for k, r_gt in enumerate(all_gt_masks):
                iou = np.logical_and(r_gt, r_det).sum() / float(np.logical_or(r_gt, r_det).sum())
                if iou > near_gt[1]:
                    near_gt = [k, iou, r_gt]
            if near_gt[1] >= iou_thresh and not found[near_gt[0]]:
                per_sample_region_tp += 1.0
                found[near_gt[0]] = True
            else:
                per_sample_region_fp += 1.0

        per_region_score = {
            'recall': per_sample_region_tp / len(all_gt_masks),
            'precision': per_sample_region_tp / (per_sample_region_tp + per_sample_region_fp + 1e-8)
        }

        return {
            'corner_tp': per_sample_corner_tp,
            'corner_fp': per_sample_corner_fp,
            'corner_length': per_sample_corner_length,
            'edge_tp': per_sample_edge_tp,
            'edge_fp': per_sample_edge_fp,
            'edge_length': per_sample_edge_length,
            'region_tp': per_sample_region_tp,
            'region_fp': per_sample_region_fp,
            'region_length': per_sample_region_length,
            'corner': per_corner_score,
            'edge': per_edge_score,
            'region': per_region_score
        }


def compute_metrics(gt_data, pred_data):
    metric = Metric()
    score = metric.calc(gt_data, pred_data)
    return score


def get_recall_and_precision(tp, fp, length):
    recall = tp / (length + 1e-8)
    precision = tp / (tp + fp + 1e-8)
    return recall, precision


if __name__ == '__main__':
    base_path = './'
    gt_datapath = '../data/cities_dataset/annot'
    metric = Metric()
    corner_tp = 0.0
    corner_fp = 0.0
    corner_length = 0.0
    edge_tp = 0.0
    edge_fp = 0.0
    edge_length = 0.0
    region_tp = 0.0
    region_fp = 0.0
    region_length = 0.0
    for file_name in os.listdir(base_path):
        if len(file_name) < 10:
            continue
        f = open(os.path.join(base_path, file_name), 'rb')
        gt_data = np.load(os.path.join(gt_datapath, file_name + '.npy'), allow_pickle=True).tolist()
        candidate = pickle.load(f)
        conv_corners = candidate.graph.getCornersArray()
        conv_edges = candidate.graph.getEdgesArray()
        conv_data = {'corners': conv_corners, 'edges': conv_edges}
        score = metric.calc(gt_data, conv_data)
        corner_tp += score['corner_tp']
        corner_fp += score['corner_fp']
        corner_length += score['corner_length']
        edge_tp += score['edge_tp']
        edge_fp += score['edge_fp']
        edge_length += score['edge_length']
        region_tp += score['region_tp']
        region_fp += score['region_fp']
        region_length += score['region_length']

    f = open(os.path.join(base_path, 'score.txt'), 'w')
    # corner
    recall, precision = get_recall_and_precision(corner_tp, corner_fp, corner_length)
    f_score = 2.0 * precision * recall / (recall + precision + 1e-8)
    print('corners - precision: %.3f recall: %.3f f_score: %.3f' % (precision, recall, f_score))
    f.write('corners - precision: %.3f recall: %.3f f_score: %.3f\n' % (precision, recall, f_score))

    # edge
    recall, precision = get_recall_and_precision(edge_tp, edge_fp, edge_length)
    f_score = 2.0 * precision * recall / (recall + precision + 1e-8)
    print('edges - precision: %.3f recall: %.3f f_score: %.3f' % (precision, recall, f_score))
    f.write('edges - precision: %.3f recall: %.3f f_score: %.3f\n' % (precision, recall, f_score))

    # region
    recall, precision = get_recall_and_precision(region_tp, region_fp, region_length)
    f_score = 2.0 * precision * recall / (recall + precision + 1e-8)
    print('regions - precision: %.3f recall: %.3f f_score: %.3f' % (precision, recall, f_score))
    f.write('regions - precision: %.3f recall: %.3f f_score: %.3f\n' % (precision, recall, f_score))

    f.close()