File size: 5,929 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import numpy as np
import cv2


def building_metric(logits, label):
    preds = torch.argmax(logits, dim=-1)
    true_ids = torch.where(label==1)
    num_true = true_ids[0].shape[0]
    tp = (preds[true_ids] == 1).sum().double()
    recall = tp / num_true
    prec = tp / (preds == 1).sum()
    fscore = 2 * recall * prec / (prec + recall)
    return recall, prec, fscore


def edge_acc(logits, label, lengths, gt_values):
    """
        edge f1-score for training/validation logging
    """
    all_acc = list()
    for i in range(logits.shape[0]):
        length = lengths[i]
        gt_value = gt_values[i, :length]
        pred_idx = torch.where(gt_value == 2)
        if len(pred_idx[0]) == 0:
            continue
        else:
            preds = torch.argmax(logits[i, :, :length][:, pred_idx[0]], dim=0)
            gts = label[i, :length][pred_idx[0]]
            pos_ids = torch.where(gts == 1)
            correct = (preds[pos_ids] == gts[pos_ids]).sum().float()
            num_pos_gt = len(pos_ids[0])
            recall = correct / num_pos_gt if num_pos_gt > 0 else torch.tensor(0)
            num_pos_pred = (preds == 1).sum().float()
            prec = correct / num_pos_pred if num_pos_pred > 0 else torch.tensor(0)
            f_score = 2.0 * prec * recall / (recall + prec + 1e-8)
            f_score = f_score.cpu()
            all_acc.append(f_score)
    if len(all_acc) > 1:
        all_acc = torch.stack(all_acc, 0)
        avg_acc = all_acc.mean()
    else:
        avg_acc = all_acc[0]
    return avg_acc


def corner_eval(targets, outputs):
    assert isinstance(targets, np.ndarray)
    assert isinstance(outputs, np.ndarray)
    output_to_gt = dict()
    gt_to_output = dict()
    for target_i, target in enumerate(targets):
        dist = (outputs - target) ** 2
        dist = np.sqrt(dist.sum(axis=-1))
        min_dist = dist.min()
        min_idx = dist.argmin()
        if min_dist < 5 and min_idx not in output_to_gt:  # a positive match
            output_to_gt[min_idx] = target_i
            gt_to_output[target_i] = min_idx
    tp = len(output_to_gt)
    prec = tp / len(outputs)
    recall = tp / len(targets)
    return prec, recall


def rectify_data(image, annot):
    rows, cols, ch = image.shape
    bins = [0 for _ in range(180)]  # 5 degree per bin
    # edges vote for directions

    gauss_weights = [0.1, 0.2, 0.5, 1, 0.5, 0.2, 0.1]

    for src, connections in annot.items():
        for end in connections:
            edge = [(end[0] - src[0]), -(end[1] - src[1])]
            edge_len = np.sqrt(edge[0] ** 2 + edge[1] ** 2)
            if edge_len <= 10:  # skip too short edges
                continue
            if edge[0] == 0:
                bin_id = 90
            else:
                theta = np.arctan(edge[1] / edge[0]) / np.pi * 180
                if edge[0] * edge[1] < 0:
                    theta += 180
                bin_id = int(theta.round())
                if bin_id == 180:
                    bin_id = 0
            for offset in range(-3, 4):
                bin_idx = bin_id + offset
                if bin_idx >= 180:
                    bin_idx -= 180
                bins[bin_idx] += np.sqrt(edge[1] ** 2 + edge[0] ** 2) * gauss_weights[offset + 2]

    bins = np.array(bins)
    sorted_ids = np.argsort(bins)[::-1]
    bin_1 = sorted_ids[0]
    remained_ids = [idx for idx in sorted_ids if angle_dist(bin_1, idx) >= 30]
    bin_2 = remained_ids[0]
    if bin_1 < bin_2:
        bin_1, bin_2 = bin_2, bin_1

    dir_1, dir_2 = bin_1, bin_2
    # compute the affine parameters, and apply affine transform to the image
    origin = [127, 127]
    p1_old = [127 + 100 * np.cos(dir_1 / 180 * np.pi), 127 - 100 * np.sin(dir_1 / 180 * np.pi)]
    p2_old = [127 + 100 * np.cos(dir_2 / 180 * np.pi), 127 - 100 * np.sin(dir_2 / 180 * np.pi)]
    pts1 = np.array([origin, p1_old, p2_old]).astype(np.float32)
    p1_new = [127, 27]  # y_axis
    p2_new = [227, 127]  # x_axis
    pts2 = np.array([origin, p1_new, p2_new]).astype(np.float32)

    M1 = cv2.getAffineTransform(pts1, pts2)

    all_corners = list(annot.keys())
    all_corners_ = np.array(all_corners)
    ones = np.ones([all_corners_.shape[0], 1])
    all_corners_ = np.concatenate([all_corners_, ones], axis=-1)
    new_corners = np.matmul(M1, all_corners_.T).T

    M = np.concatenate([M1, np.array([[0, 0, 1]])], axis=0)

    x_max = new_corners[:, 0].max()
    x_min = new_corners[:, 0].min()
    y_max = new_corners[:, 1].max()
    y_min = new_corners[:, 1].min()

    side_x = (x_max - x_min) * 0.1
    side_y = (y_max - y_min) * 0.1
    right_border = x_max + side_x
    left_border = x_min - side_x
    bot_border = y_max + side_y
    top_border = y_min - side_y
    pts1 = np.array([[left_border, top_border], [right_border, top_border], [right_border, bot_border]]).astype(
        np.float32)
    pts2 = np.array([[5, 5], [250, 5], [250, 250]]).astype(np.float32)
    M_scale = cv2.getAffineTransform(pts1, pts2)

    M = np.matmul(np.concatenate([M_scale, np.array([[0, 0, 1]])], axis=0), M)

    new_image = cv2.warpAffine(image, M[:2, :], (cols, rows), borderValue=(255, 255, 255))
    all_corners_ = np.concatenate([all_corners, ones], axis=-1)
    new_corners = np.matmul(M[:2, :], all_corners_.T).T

    corner_mapping = dict()
    for idx, corner in enumerate(all_corners):
        corner_mapping[corner] = new_corners[idx]

    new_annot = dict()
    for corner, connections in annot.items():
        new_corner = corner_mapping[corner]
        tuple_new_corner = tuple(new_corner)
        new_annot[tuple_new_corner] = list()
        for to_corner in connections:
            new_annot[tuple_new_corner].append(corner_mapping[tuple(to_corner)])

    # do the affine transform
    return new_image, new_annot, M


def angle_dist(a1, a2):
    if a1 > a2:
        a1, a2 = a2, a1
    d1 = a2 - a1
    d2 = a1 + 180 - a2
    dist = min(d1, d2)
    return dist