File size: 4,660 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import cv2
import torch
import os
import time

from DataRW.DataRW import DataRW
from S3DLoader.S3DLoader import S3DLoader

class S3DRW(DataRW):
    def __init__(self, options):
        """
        Class for accessing FloorNet dataset related data

        :param options:
        """
        # initialize the base class variables
        super(DataRW, self).__init__()

        self.options = options

        self.dataset_path = options.dataset_path
        self.scene_id = options.scene_id

        self.mcts_path = options.mcts_path
        self.creation_time = int(time.time())

        self.device = torch.device("cpu")

        # mode = "train"
        # mode = "online_eval"
        mode = "test"
        # For validation only
        # self.loader = S3DLoader(options, 'online_eval').dataset
        self.loader = S3DLoader(options, mode).dataset

        # gt_sample = iter(floornet_loader.dataset[int(self.scene_id)])
        # self.gt_sample = floornet_loader.load_sample(list(iter(floornet_loader.dataset))[int(self.scene_id)])

        if mode == "online_eval":
            scene_ind = int(self.scene_id[6:]) - 3000
        elif mode == "test":
            scene_ind = int(self.scene_id[6:]) - 3250
        elif mode == "train":
            scene_ind = int(self.scene_id[6:])
        else:
            assert False

        # print(len(list(iter(self.s3d_loader.data))))
        self.gt_sample = gt_sample = self.loader[scene_ind]
        self.gt_sample["density_map"] = torch.tensor(self.gt_sample["density_map"][None], device=self.device)
        self.gt_sample["room_map"] = torch.tensor(self.gt_sample["room_map"][None,:,:,None], device=self.device)
        self.gt_sample["wall_map"] = torch.tensor(self.gt_sample["wall_map"][None,:,:,None], device=self.device)


        self.density_map = self.gt_sample['density_map'][:,:,:,None]

        self.h, self.w = self.density_map.shape[1], self.density_map.shape[2]

        self.generate_input_map_from_props = self.generate_input_dict_from_room_props

    def get_gt_solution(self):
        """
        Read top-view density map of the scene

        :return:
        """
        img_path = os.path.join(self.dataset_path, str(self.scene_id) + "_density.png")
        density_map = cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR)[:,:, 0][None,:,:,None]

        density_map = torch.from_numpy(density_map).to(self.device)

        dm_min = torch.min(density_map)
        dm_max = torch.max(density_map)

        density_map = (density_map - dm_min) / (dm_max - dm_min)

        return density_map.type(torch.cuda.FloatTensor)

    def polygonize_mask(self, pm, return_mask=True):
        pm_np = pm.cpu().numpy()

        room_mask = 255 * (pm_np == 1)
        room_mask = room_mask.astype(np.uint8)
        room_mask_inv = 255 - room_mask

        ret, thresh = cv2.threshold(room_mask_inv, 250, 255, cv2.THRESH_BINARY_INV)

        contours, hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)

        cnt = contours[0]
        max_area = cv2.contourArea(cnt)

        for cont in contours:
            if cv2.contourArea(cont) > max_area:
                cnt = cont
                max_area = cv2.contourArea(cont)

        # define main island contour approx. and hull
        perimeter = cv2.arcLength(cnt, True)
        epsilon = 0.01 * cv2.arcLength(cnt, True)
        approx = cv2.approxPolyDP(cnt, epsilon, True)

        # approx = np.concatenate([approx, approx[0][None]], axis=0)
        approx = approx.astype(np.int32).reshape((1, -1, 2))

        if return_mask:
            room_filled_map = np.zeros((self.h, self.w))
            cv2.fillPoly(room_filled_map, approx, color=1.)

            room_filled_map = torch.tensor(room_filled_map[:,:], dtype=torch.float32, device=self.device)

            return room_filled_map
        else:
            approx_tensor = torch.tensor(approx, device=self.device)
            return approx_tensor

    def generate_input_dict_from_room_props(self, room_prop_list, score_function, use_thresh=False):
        """

        :param room_prop_list:
        :type room_prop_list: list of FloorPlanRoomProp
        :param score_function:
        :return:
        """

        if score_function == "room_maskrcnn_iou":
            inputs = self.generate_input_dict_for_room_maskrcnn_iou(room_prop_list)
        elif score_function == "room_iou":
            inputs = self.generate_input_dict_for_room_iou(room_prop_list, use_thresh=use_thresh)
        else:
            assert "generate_input_dict_from_room_props for %s not implemented" % score_function

        return inputs