Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,22 +6,26 @@ from pytubefix import YouTube
|
|
6 |
from pytubefix.cli import on_progress
|
7 |
import requests
|
8 |
import os
|
|
|
9 |
|
10 |
CLASSIFIER = "Jzuluaga/accent-id-commonaccent_xlsr-en-english"
|
11 |
|
|
|
|
|
|
|
|
|
12 |
def download_video(url):
|
13 |
-
"""
|
14 |
try:
|
15 |
if "youtube.com" in url or "youtu.be" in url:
|
16 |
yt = YouTube(url, on_progress_callback=on_progress)
|
17 |
-
# Get progressive mp4 streams (video + audio combined)
|
18 |
stream = yt.streams.filter(progressive=True, file_extension='mp4').first()
|
19 |
if not stream:
|
20 |
raise ValueError("No suitable video stream found.")
|
21 |
video_path = stream.download()
|
22 |
return video_path
|
23 |
else:
|
24 |
-
#
|
25 |
local_filename = "temp_video.mp4"
|
26 |
with requests.get(url, stream=True) as r:
|
27 |
r.raise_for_status()
|
@@ -33,6 +37,7 @@ def download_video(url):
|
|
33 |
raise RuntimeError(f"Failed to download video: {e}")
|
34 |
|
35 |
def extract_audio(video_path):
|
|
|
36 |
clip = VideoFileClip(video_path)
|
37 |
audio_path = "temp_audio.wav"
|
38 |
clip.audio.write_audiofile(audio_path, logger=None)
|
@@ -40,18 +45,21 @@ def extract_audio(video_path):
|
|
40 |
return audio_path
|
41 |
|
42 |
def classify_accent(audio_path):
|
|
|
|
|
43 |
classifier = EncoderClassifier.from_hparams(
|
44 |
source=CLASSIFIER,
|
45 |
savedir="pretrained_models/accent_classifier",
|
46 |
-
run_opts={"device":
|
47 |
)
|
48 |
waveform, sample_rate = torchaudio.load(audio_path)
|
49 |
-
prediction = classifier.classify_batch(waveform)
|
50 |
predicted_accent = prediction[3][0]
|
51 |
confidence = prediction[1].exp().max().item() * 100
|
52 |
return predicted_accent, f"{confidence:.2f}%"
|
53 |
|
54 |
def process_video(url):
|
|
|
55 |
video_path = None
|
56 |
audio_path = None
|
57 |
try:
|
@@ -62,6 +70,7 @@ def process_video(url):
|
|
62 |
except Exception as e:
|
63 |
return f"Error: {e}", ""
|
64 |
finally:
|
|
|
65 |
for f in [video_path, audio_path]:
|
66 |
if f and os.path.exists(f):
|
67 |
os.remove(f)
|
@@ -79,4 +88,3 @@ iface = gr.Interface(
|
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
iface.launch()
|
82 |
-
|
|
|
6 |
from pytubefix.cli import on_progress
|
7 |
import requests
|
8 |
import os
|
9 |
+
import torch
|
10 |
|
11 |
CLASSIFIER = "Jzuluaga/accent-id-commonaccent_xlsr-en-english"
|
12 |
|
13 |
+
def get_default_device():
|
14 |
+
"""Return the default device (cuda if available, else cpu)."""
|
15 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
def download_video(url):
|
18 |
+
"""Download video from YouTube or direct MP4 URL using pytubefix."""
|
19 |
try:
|
20 |
if "youtube.com" in url or "youtu.be" in url:
|
21 |
yt = YouTube(url, on_progress_callback=on_progress)
|
|
|
22 |
stream = yt.streams.filter(progressive=True, file_extension='mp4').first()
|
23 |
if not stream:
|
24 |
raise ValueError("No suitable video stream found.")
|
25 |
video_path = stream.download()
|
26 |
return video_path
|
27 |
else:
|
28 |
+
# Direct MP4 file download
|
29 |
local_filename = "temp_video.mp4"
|
30 |
with requests.get(url, stream=True) as r:
|
31 |
r.raise_for_status()
|
|
|
37 |
raise RuntimeError(f"Failed to download video: {e}")
|
38 |
|
39 |
def extract_audio(video_path):
|
40 |
+
"""Extract audio from video and save as WAV file."""
|
41 |
clip = VideoFileClip(video_path)
|
42 |
audio_path = "temp_audio.wav"
|
43 |
clip.audio.write_audiofile(audio_path, logger=None)
|
|
|
45 |
return audio_path
|
46 |
|
47 |
def classify_accent(audio_path):
|
48 |
+
"""Classify English accent from audio file using SpeechBrain model."""
|
49 |
+
device = get_default_device()
|
50 |
classifier = EncoderClassifier.from_hparams(
|
51 |
source=CLASSIFIER,
|
52 |
savedir="pretrained_models/accent_classifier",
|
53 |
+
run_opts={"device": str(device)}
|
54 |
)
|
55 |
waveform, sample_rate = torchaudio.load(audio_path)
|
56 |
+
prediction = classifier.classify_batch(waveform.to(device))
|
57 |
predicted_accent = prediction[3][0]
|
58 |
confidence = prediction[1].exp().max().item() * 100
|
59 |
return predicted_accent, f"{confidence:.2f}%"
|
60 |
|
61 |
def process_video(url):
|
62 |
+
"""Main processing pipeline: download video, extract audio, classify accent."""
|
63 |
video_path = None
|
64 |
audio_path = None
|
65 |
try:
|
|
|
70 |
except Exception as e:
|
71 |
return f"Error: {e}", ""
|
72 |
finally:
|
73 |
+
# Clean up temporary files
|
74 |
for f in [video_path, audio_path]:
|
75 |
if f and os.path.exists(f):
|
76 |
os.remove(f)
|
|
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
iface.launch()
|
|