Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,37 +2,36 @@ import gradio as gr
|
|
2 |
from moviepy.editor import VideoFileClip
|
3 |
from speechbrain.pretrained import EncoderClassifier
|
4 |
import torchaudio
|
5 |
-
from
|
|
|
|
|
6 |
import os
|
7 |
|
8 |
CLASSIFIER = "Jzuluaga/accent-id-commonaccent_xlsr-en-english"
|
9 |
|
10 |
def download_video(url):
|
11 |
-
"""Handles YouTube and direct video links with error handling"""
|
12 |
try:
|
13 |
if "youtube.com" in url or "youtu.be" in url:
|
14 |
-
yt = YouTube(url)
|
|
|
15 |
stream = yt.streams.filter(progressive=True, file_extension='mp4').first()
|
16 |
if not stream:
|
17 |
raise ValueError("No suitable video stream found.")
|
18 |
-
video_path = stream.download()
|
19 |
return video_path
|
20 |
else:
|
21 |
# For direct MP4 links, download file
|
22 |
-
import requests
|
23 |
local_filename = "temp_video.mp4"
|
24 |
with requests.get(url, stream=True) as r:
|
25 |
r.raise_for_status()
|
26 |
with open(local_filename, 'wb') as f:
|
27 |
for chunk in r.iter_content(chunk_size=8192):
|
28 |
f.write(chunk)
|
29 |
-
|
30 |
-
return video_path
|
31 |
except Exception as e:
|
32 |
raise RuntimeError(f"Failed to download video: {e}")
|
33 |
|
34 |
-
|
35 |
-
|
36 |
def extract_audio(video_path):
|
37 |
clip = VideoFileClip(video_path)
|
38 |
audio_path = "temp_audio.wav"
|
@@ -44,11 +43,10 @@ def classify_accent(audio_path):
|
|
44 |
classifier = EncoderClassifier.from_hparams(
|
45 |
source=CLASSIFIER,
|
46 |
savedir="pretrained_models/accent_classifier",
|
47 |
-
run_opts={"device":"cpu"} #
|
48 |
)
|
49 |
waveform, sample_rate = torchaudio.load(audio_path)
|
50 |
prediction = classifier.classify_batch(waveform)
|
51 |
-
# prediction format: (scores, probabilities, embeddings, predicted_labels)
|
52 |
predicted_accent = prediction[3][0]
|
53 |
confidence = prediction[1].exp().max().item() * 100
|
54 |
return predicted_accent, f"{confidence:.2f}%"
|
@@ -68,8 +66,6 @@ def process_video(url):
|
|
68 |
if f and os.path.exists(f):
|
69 |
os.remove(f)
|
70 |
|
71 |
-
|
72 |
-
# Gradio interface
|
73 |
iface = gr.Interface(
|
74 |
fn=process_video,
|
75 |
inputs=gr.Textbox(label="Enter Public Video URL (YouTube, Loom, direct MP4)"),
|
@@ -83,3 +79,4 @@ iface = gr.Interface(
|
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
iface.launch()
|
|
|
|
2 |
from moviepy.editor import VideoFileClip
|
3 |
from speechbrain.pretrained import EncoderClassifier
|
4 |
import torchaudio
|
5 |
+
from pytubefix import YouTube
|
6 |
+
from pytubefix.cli import on_progress
|
7 |
+
import requests
|
8 |
import os
|
9 |
|
10 |
CLASSIFIER = "Jzuluaga/accent-id-commonaccent_xlsr-en-english"
|
11 |
|
12 |
def download_video(url):
|
13 |
+
"""Handles YouTube and direct video links with pytubefix and error handling"""
|
14 |
try:
|
15 |
if "youtube.com" in url or "youtu.be" in url:
|
16 |
+
yt = YouTube(url, on_progress_callback=on_progress)
|
17 |
+
# Get progressive mp4 streams (video + audio combined)
|
18 |
stream = yt.streams.filter(progressive=True, file_extension='mp4').first()
|
19 |
if not stream:
|
20 |
raise ValueError("No suitable video stream found.")
|
21 |
+
video_path = stream.download()
|
22 |
return video_path
|
23 |
else:
|
24 |
# For direct MP4 links, download file
|
|
|
25 |
local_filename = "temp_video.mp4"
|
26 |
with requests.get(url, stream=True) as r:
|
27 |
r.raise_for_status()
|
28 |
with open(local_filename, 'wb') as f:
|
29 |
for chunk in r.iter_content(chunk_size=8192):
|
30 |
f.write(chunk)
|
31 |
+
return local_filename
|
|
|
32 |
except Exception as e:
|
33 |
raise RuntimeError(f"Failed to download video: {e}")
|
34 |
|
|
|
|
|
35 |
def extract_audio(video_path):
|
36 |
clip = VideoFileClip(video_path)
|
37 |
audio_path = "temp_audio.wav"
|
|
|
43 |
classifier = EncoderClassifier.from_hparams(
|
44 |
source=CLASSIFIER,
|
45 |
savedir="pretrained_models/accent_classifier",
|
46 |
+
run_opts={"device":"cpu"} # Change to "cuda" if GPU available
|
47 |
)
|
48 |
waveform, sample_rate = torchaudio.load(audio_path)
|
49 |
prediction = classifier.classify_batch(waveform)
|
|
|
50 |
predicted_accent = prediction[3][0]
|
51 |
confidence = prediction[1].exp().max().item() * 100
|
52 |
return predicted_accent, f"{confidence:.2f}%"
|
|
|
66 |
if f and os.path.exists(f):
|
67 |
os.remove(f)
|
68 |
|
|
|
|
|
69 |
iface = gr.Interface(
|
70 |
fn=process_video,
|
71 |
inputs=gr.Textbox(label="Enter Public Video URL (YouTube, Loom, direct MP4)"),
|
|
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
iface.launch()
|
82 |
+
|