EdgarDataScientist's picture
Update app.py
105a910 verified
raw
history blame
3.34 kB
import gradio as gr
from moviepy.editor import VideoFileClip
from speechbrain.pretrained import EncoderClassifier
import torchaudio
import requests
import os
import torch
import yt_dlp
CLASSIFIER = "Jzuluaga/accent-id-commonaccent_xlsr-en-english"
def get_default_device():
"""Return the default device (cuda if available, else cpu)."""
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
def download_video(url):
"""Download video from YouTube or direct MP4 URL using yt_dlp or requests."""
try:
if "youtube.com" in url or "youtu.be" in url:
output_path = "temp_video.%(ext)s"
ydl_opts = {
'format': 'best[ext=mp4]/best',
'outtmpl': output_path,
'quiet': True,
'noplaylist': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
downloaded_path = output_path.replace("%(ext)s", info_dict['ext'])
return downloaded_path
else:
# Direct MP4 file download
local_filename = "temp_video.mp4"
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(local_filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
return local_filename
except Exception as e:
raise RuntimeError(f"Failed to download video: {e}")
def extract_audio(video_path):
"""Extract audio from video and save as WAV file."""
clip = VideoFileClip(video_path)
audio_path = "temp_audio.wav"
clip.audio.write_audiofile(audio_path, logger=None)
clip.close()
return audio_path
def classify_accent(audio_path):
"""Classify English accent from audio file using SpeechBrain model."""
device = get_default_device()
classifier = EncoderClassifier.from_hparams(
source=CLASSIFIER,
savedir="pretrained_models/accent_classifier",
run_opts={"device": str(device)}
)
waveform, sample_rate = torchaudio.load(audio_path)
prediction = classifier.classify_batch(waveform.to(device))
predicted_accent = prediction[3][0]
confidence = prediction[1].exp().max().item() * 100
return predicted_accent, f"{confidence:.2f}%"
def process_video(url):
"""Main processing pipeline: download video, extract audio, classify accent."""
video_path = None
audio_path = None
try:
video_path = download_video(url)
audio_path = extract_audio(video_path)
accent, confidence = classify_accent(audio_path)
return accent, confidence
except Exception as e:
return f"Error: {e}", ""
finally:
for f in [video_path, audio_path]:
if f and os.path.exists(f):
os.remove(f)
iface = gr.Interface(
fn=process_video,
inputs=gr.Textbox(label="Enter Public Video URL (YouTube or direct MP4 link)"),
outputs=[
gr.Textbox(label="Detected Accent"),
gr.Textbox(label="Confidence Score")
],
title="English Accent Classifier",
description="Paste a public video URL (YouTube or MP4) to detect the English accent and confidence score."
)
if __name__ == "__main__":
iface.launch()