import time import streamlit as st import numpy as np from PIL import Image import urllib.request from utils import * labels = gen_labels() html_temp = '''

Garbage Segregation

''' st.markdown(html_temp, unsafe_allow_html=True) html_temp = '''

Please upload Waste Image to find its Category

''' st.markdown(html_temp, unsafe_allow_html=True) opt = st.selectbox("How do you want to upload the image for classification?\n", ('Please Select', 'Upload image via link', 'Upload image from device')) image = None # Initialize image variable if opt == 'Upload image from device': file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg']) if file is not None: image = Image.open(file).resize((256, 256), Image.LANCZOS) elif opt == 'Upload image via link': try: img = st.text_input('Enter the Image Address') image = Image.open(urllib.request.urlopen(img)).resize((256, 256), Image.LANCZOS) except ValueError: if st.button('Submit'): show = st.error("Please Enter a valid Image Address!") time.sleep(4) show.empty() if image is not None: st.image(image, width=256, caption='Uploaded Image') if st.button('Predict'): img_array = preprocess(image) prediction = model.predict(img_array) st.info(f'Hey! The uploaded image has been classified as "{labels[np.argmax(prediction)]}" waste.')