import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy from tensorflow.keras.optimizers import Adam from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np from PIL import Image def gen_labels(): train = 'Dataset' train_generator = ImageDataGenerator(rescale=1/255) train_generator = train_generator.flow_from_directory(train, target_size=(256, 256), batch_size=32, class_mode='sparse') labels = train_generator.class_indices labels = dict((v, k) for k, v in labels.items()) return labels data_augmentation = tf.keras.Sequential([ tf.keras.layers.experimental.preprocessing.Rescaling(1./127.5, offset= -1), tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"), tf.keras.layers.experimental.preprocessing.RandomRotation(0.2), tf.keras.layers.experimental.preprocessing.RandomZoom(0.2) ], name='data_augmentation') #Instantiating the base model input_shape = (256,256,3) base_model = tf.keras.applications.ResNet50V2(include_top=False, input_shape=input_shape) #Making the layers of the model trainable base_model.trainable = True def preprocess(img_path_or_img): if isinstance(img_path_or_img, str): # Check if input is a path img = Image.open(img_path_or_img) elif isinstance(img_path_or_img, Image.Image): # Check if input is already an Image object img = img_path_or_img else: raise ValueError("Input must be a string path or a PIL Image object.") img = img.resize((256, 256)) img_array = np.array(img) return img_array def model_arc(): model = tf.keras.Sequential([ data_augmentation, base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(6, activation='softmax') ]) learning_rate = 0.00001 model.compile( loss='sparse_categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate), metrics=['accuracy'] ) return model