Spaces:
Sleeping
Sleeping
Commit
·
baf7aa0
1
Parent(s):
7b908dc
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,57 @@
|
|
1 |
import time
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
import urllib.request
|
6 |
from utils import *
|
7 |
-
#from fastai.data.external import *
|
8 |
|
9 |
-
|
10 |
-
def classify_garbage(img_path, model):
|
11 |
-
processed_img = preprocess(img_path)
|
12 |
-
prediction = model.predict(processed_img)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
|
23 |
-
#
|
24 |
-
st.markdown('<center><h1>Garbage Segregation</h1></center>', unsafe_allow_html=True)
|
25 |
-
st.markdown('<center><h3>Please upload Waste Image to find its Category</h3></center>', unsafe_allow_html=True)
|
26 |
-
|
27 |
-
opt = st.selectbox("How do you want to upload the image for classification?", ('Please Select', 'Upload image via link', 'Upload image from device'))
|
28 |
|
29 |
if opt == 'Upload image from device':
|
30 |
file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg'])
|
31 |
if file is not None:
|
32 |
-
|
33 |
-
image = preprocess(pil_image)
|
34 |
|
35 |
elif opt == 'Upload image via link':
|
36 |
-
img_url = st.text_input('Enter the Image Address')
|
37 |
try:
|
38 |
-
|
39 |
-
image =
|
40 |
except ValueError:
|
41 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
img_array = preprocess(image) # This should return an array of shape (1, 256, 256, 3)
|
52 |
-
|
53 |
-
predicted_class, confidence = classify_garbage(img_array, model)
|
54 |
-
|
55 |
-
st.info('The uploaded image has been classified as "{}" with {:.2f}% confidence.'.format(predicted_class, confidence))
|
56 |
-
|
57 |
-
except Exception as e:
|
58 |
-
st.error(f"An error occurred: {e}")
|
|
|
1 |
import time
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
import urllib.request
|
6 |
from utils import *
|
|
|
7 |
|
8 |
+
labels = gen_labels()
|
|
|
|
|
|
|
9 |
|
10 |
+
html_temp = '''
|
11 |
+
<div style="padding-bottom: 20px; padding-top: 20px; padding-left: 5px; padding-right: 5px">
|
12 |
+
<center><h1>Garbage Segregation</h1></center>
|
13 |
+
</div>
|
14 |
+
'''
|
15 |
+
st.markdown(html_temp, unsafe_allow_html=True)
|
16 |
|
17 |
+
html_temp = '''
|
18 |
+
<div>
|
19 |
+
<h2></h2>
|
20 |
+
<center><h3>Please upload Waste Image to find its Category</h3></center>
|
21 |
+
</div>
|
22 |
+
'''
|
23 |
+
st.markdown(html_temp, unsafe_allow_html=True)
|
24 |
|
25 |
+
opt = st.selectbox("How do you want to upload the image for classification?\n", ('Please Select', 'Upload image via link', 'Upload image from device'))
|
26 |
|
27 |
+
image = None # Initialize image variable
|
|
|
|
|
|
|
|
|
28 |
|
29 |
if opt == 'Upload image from device':
|
30 |
file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg'])
|
31 |
if file is not None:
|
32 |
+
image = Image.open(file).resize((256, 256), Image.LANCZOS)
|
|
|
33 |
|
34 |
elif opt == 'Upload image via link':
|
|
|
35 |
try:
|
36 |
+
img = st.text_input('Enter the Image Address')
|
37 |
+
image = Image.open(urllib.request.urlopen(img)).resize((256, 256), Image.LANCZOS)
|
38 |
except ValueError:
|
39 |
+
if st.button('Submit'):
|
40 |
+
show = st.error("Please Enter a valid Image Address!")
|
41 |
+
time.sleep(4)
|
42 |
+
show.empty()
|
43 |
+
|
44 |
+
try:
|
45 |
+
if image is not None:
|
46 |
+
st.image(image, width = 300, caption = 'Uploaded Image')
|
47 |
+
if st.button('Predict'):
|
48 |
+
img = preprocess(image)
|
49 |
|
50 |
+
model = model_arc()
|
51 |
+
#model.load_weights("classify_model.h5")
|
52 |
|
53 |
+
prediction = model.predict(img[np.newaxis, ...])
|
54 |
+
st.info('Hey! The uploaded image has been classified as " {} waste " '.format(labels[np.argmax(prediction[0], axis=-1)]))
|
55 |
+
except Exception as e:
|
56 |
+
st.info(e)
|
57 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|