Spaces:
Running
Running
Commit
·
96aab6f
1
Parent(s):
6750728
Update app.py
Browse files
app.py
CHANGED
@@ -10,18 +10,15 @@ def classify_garbage(img_path, model):
|
|
10 |
processed_img = preprocess(img_path)
|
11 |
prediction = model.predict(processed_img)
|
12 |
|
13 |
-
|
14 |
predicted_class = np.argmax(prediction, axis=1)[0]
|
15 |
-
classification_result =
|
16 |
|
17 |
# Get the confidence (probability) of the predicted class
|
18 |
confidence = prediction[0][predicted_class] * 100 # Convert probability to percentage
|
19 |
|
20 |
return classification_result, confidence
|
21 |
|
22 |
-
# Load labels
|
23 |
-
labels = gen_labels()
|
24 |
-
|
25 |
# Streamlit app layout
|
26 |
st.markdown('<center><h1>Garbage Segregation</h1></center>', unsafe_allow_html=True)
|
27 |
st.markdown('<center><h3>Please upload Waste Image to find its Category</h3></center>', unsafe_allow_html=True)
|
@@ -46,9 +43,13 @@ if 'image' in locals(): # Check if image variable exists
|
|
46 |
if st.button('Predict'):
|
47 |
try:
|
48 |
model = model_arc() # Initialize your model
|
49 |
-
predicted_class, confidence = classify_garbage(image, model)
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
except Exception as e:
|
54 |
st.error(f"An error occurred: {e}")
|
|
|
10 |
processed_img = preprocess(img_path)
|
11 |
prediction = model.predict(processed_img)
|
12 |
|
13 |
+
labels = gen_labels()
|
14 |
predicted_class = np.argmax(prediction, axis=1)[0]
|
15 |
+
classification_result = labels[predicted_class]
|
16 |
|
17 |
# Get the confidence (probability) of the predicted class
|
18 |
confidence = prediction[0][predicted_class] * 100 # Convert probability to percentage
|
19 |
|
20 |
return classification_result, confidence
|
21 |
|
|
|
|
|
|
|
22 |
# Streamlit app layout
|
23 |
st.markdown('<center><h1>Garbage Segregation</h1></center>', unsafe_allow_html=True)
|
24 |
st.markdown('<center><h3>Please upload Waste Image to find its Category</h3></center>', unsafe_allow_html=True)
|
|
|
43 |
if st.button('Predict'):
|
44 |
try:
|
45 |
model = model_arc() # Initialize your model
|
|
|
46 |
|
47 |
+
# Ensure image shape is correct and add batch dimension
|
48 |
+
img_array = preprocess(image) # This should return an array of shape (1, 256, 256, 3)
|
49 |
+
|
50 |
+
predicted_class, confidence = classify_garbage(img_array, model)
|
51 |
+
|
52 |
+
st.info('The uploaded image has been classified as "{}" with {:.2f}% confidence.'.format(predicted_class, confidence))
|
53 |
|
54 |
except Exception as e:
|
55 |
st.error(f"An error occurred: {e}")
|