Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,20 @@ from PIL import Image
|
|
4 |
import tensorflow as tf
|
5 |
from utils import preprocess_image
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Initialize labels and model
|
8 |
labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
9 |
model = tf.keras.models.load_model('classify_model.h5')
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
12 |
# Customized Streamlit styles
|
13 |
st.markdown(
|
14 |
"""
|
@@ -74,47 +83,10 @@ st.image("https://ecoclimsolutions.files.wordpress.com/2024/01/rmcai-removebg.pn
|
|
74 |
# Page title
|
75 |
st.title("EcoIdentify by EcoClim Solutions")
|
76 |
|
77 |
-
# Mode selection
|
78 |
mode = st.selectbox("Select Mode", ["Predict Mode", "Train Mode"])
|
79 |
|
80 |
if mode == "Predict Mode":
|
81 |
-
#
|
82 |
-
st.header("Upload a waste image to find its category")
|
83 |
-
|
84 |
-
# Note
|
85 |
-
st.markdown("* Please note that our dataset is trained primarily with images that contain a white background. Therefore, images with a white background would produce maximum accuracy *")
|
86 |
-
|
87 |
-
# Image upload section
|
88 |
-
opt = st.selectbox("How do you want to upload the image for classification?", ("Please Select", "Upload image from device"))
|
89 |
-
|
90 |
-
image = None
|
91 |
-
|
92 |
-
if opt == 'Upload image from device':
|
93 |
-
file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg'])
|
94 |
-
if file:
|
95 |
-
try:
|
96 |
-
image = preprocess_image(file)
|
97 |
-
except Exception as e:
|
98 |
-
st.error(f"An error occurred: {e}. Please contact us EcoClim Solutions at EcoClimSolutions.wordpress.com.")
|
99 |
-
try:
|
100 |
-
if image is not None:
|
101 |
-
st.image(image, width=256, caption='Uploaded Image')
|
102 |
-
if st.button('Predict'):
|
103 |
-
prediction = model.predict(image[np.newaxis, ...])
|
104 |
-
predicted_label = labels[np.argmax(prediction[0], axis=-1)]
|
105 |
-
st.success(f'Prediction: {predicted_label}')
|
106 |
-
|
107 |
-
# Ask user if the prediction is correct
|
108 |
-
user_feedback = st.radio("Is the prediction correct?", ["Yes", "No"])
|
109 |
-
if user_feedback == "No":
|
110 |
-
# Allow user to provide correct label
|
111 |
-
user_label = st.text_input("Enter the correct label:")
|
112 |
-
if user_label:
|
113 |
-
st.success(f'Thank you for providing feedback. Please switch to "Train Mode" to update the model.')
|
114 |
-
|
115 |
-
except Exception as e:
|
116 |
-
st.error(f"An error occurred: {e}. Please contact us EcoClim Solutions at EcoClimSolutions.wordpress.com.")
|
117 |
-
|
118 |
|
119 |
elif mode == "Train Mode":
|
120 |
# Train the model with a new image and label
|
@@ -132,11 +104,19 @@ elif mode == "Train Mode":
|
|
132 |
|
133 |
# Train button
|
134 |
if st.button('Train Model'):
|
135 |
-
|
136 |
-
image = image[np.newaxis, ...] # Add a batch dimension
|
137 |
label_index = labels.index(user_label)
|
138 |
label_one_hot = tf.one_hot(label_index, len(labels))
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
except Exception as e:
|
142 |
st.error(f"An error occurred: {e}. Please contact us EcoClim Solutions at EcoClimSolutions.wordpress.com.")
|
|
|
4 |
import tensorflow as tf
|
5 |
from utils import preprocess_image
|
6 |
|
7 |
+
import numpy as np
|
8 |
+
import streamlit as st
|
9 |
+
import tensorflow as tf
|
10 |
+
from PIL import Image
|
11 |
+
from utils import preprocess_image
|
12 |
+
|
13 |
# Initialize labels and model
|
14 |
labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
15 |
model = tf.keras.models.load_model('classify_model.h5')
|
16 |
|
17 |
+
# Accumulate images and labels for training
|
18 |
+
accumulated_images = []
|
19 |
+
accumulated_labels = []
|
20 |
+
|
21 |
# Customized Streamlit styles
|
22 |
st.markdown(
|
23 |
"""
|
|
|
83 |
# Page title
|
84 |
st.title("EcoIdentify by EcoClim Solutions")
|
85 |
|
|
|
86 |
mode = st.selectbox("Select Mode", ["Predict Mode", "Train Mode"])
|
87 |
|
88 |
if mode == "Predict Mode":
|
89 |
+
# ... [same code for Predict Mode] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
elif mode == "Train Mode":
|
92 |
# Train the model with a new image and label
|
|
|
104 |
|
105 |
# Train button
|
106 |
if st.button('Train Model'):
|
107 |
+
accumulated_images.append(image[np.newaxis, ...])
|
|
|
108 |
label_index = labels.index(user_label)
|
109 |
label_one_hot = tf.one_hot(label_index, len(labels))
|
110 |
+
accumulated_labels.append(label_one_hot)
|
111 |
+
|
112 |
+
if len(accumulated_images) >= 5: # Example threshold
|
113 |
+
X_train = np.vstack(accumulated_images)
|
114 |
+
y_train = np.vstack(accumulated_labels)
|
115 |
+
model.fit(X_train, y_train, epochs=2, batch_size=1)
|
116 |
+
st.success(f'Model has been trained with the accumulated images and labels.')
|
117 |
+
# Clear accumulated data
|
118 |
+
accumulated_images.clear()
|
119 |
+
accumulated_labels.clear()
|
120 |
+
|
121 |
except Exception as e:
|
122 |
st.error(f"An error occurred: {e}. Please contact us EcoClim Solutions at EcoClimSolutions.wordpress.com.")
|