Spaces:
Running
Running
import time | |
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
import urllib.request | |
from utils import * | |
import requests | |
labels = gen_labels() | |
html_temp = ''' | |
<div style="padding-bottom: 20px; padding-top: 20px; padding-left: 5px; padding-right: 5px"> | |
<center><h1>Garbage Segregation</h1></center> | |
</div> | |
''' | |
st.markdown(html_temp, unsafe_allow_html=True) | |
html_temp = ''' | |
<div> | |
<h2></h2> | |
<center><h3>Please upload Waste Image to find its Category</h3></center> | |
</div> | |
''' | |
st.markdown(html_temp, unsafe_allow_html=True) | |
opt = st.selectbox("How do you want to upload the image for classification?\n", ('Please Select', 'Upload image via link', 'Upload image from device')) | |
image = None # Initialize image variable | |
if opt == 'Upload image from device': | |
file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg']) | |
if file is not None: | |
image = Image.open(file).resize((256, 256), Image.LANCZOS) | |
elif opt == 'Upload image via link': | |
try: | |
img = st.text_input('Enter the Image Address') | |
image = Image.open(urllib.request.urlopen(img)).resize((256, 256), Image.LANCZOS) | |
except: | |
if st.button('Submit'): | |
show = st.error("Please Enter a valid Image Address!") | |
time.sleep(4) | |
show.empty() | |
try: | |
if image is not None: | |
st.image(image, width=256, caption='Uploaded Image') | |
if st.button('Predict'): | |
img = preprocess(image) | |
model = model_arc() | |
model.load_weights("classify_model.h5") | |
prediction = model.predict(img) | |
st.info('Hey! The uploaded image has been classified as "{} waste" '.format(labels[np.argmax(prediction)])) | |
except Exception as e: | |
st.info(str(e)) | |