EcoIdentify / app.py
Aryan-EcoClim's picture
Update app.py
48cddcb
raw
history blame
4.69 kB
import cv2
import numpy as np
import streamlit as st
from PIL import Image
import urllib.request
import io
from utils import *
from google.colab.output import eval_js
from base64 import b64decode, b64encode
# Initialize labels and model
labels = gen_labels()
model = model_arc() # Assuming this function initializes and returns a trained model
# Streamlit UI
st.markdown('''
<div style="padding-bottom: 20px; padding-top: 20px; padding-left: 5px; padding-right: 5px">
<center><h1>EcoIdentify (Test)</h1></center>
</div>
''', unsafe_allow_html=True)
st.markdown('''
<div>
<center><h3>Please upload Waste Image to find its Category</h3></center>
</div>
''', unsafe_allow_html=True)
# Function to take a photo using the webcam
def take_photo(filename='photo.jpg', quality=
0.8):
js = Javascript('''
async function takePhoto(quality) {
const div = document.createElement('div');
const capture = document.createElement('button');
capture.textContent = 'Capture';
div.appendChild(capture);
const video = document.createElement('video');
video.style.display = 'block';
const stream = await navigator.mediaDevices.getUserMedia({ video: true });
document.body.appendChild(div);
div.appendChild(video);
video.srcObject = stream;
await video.play();
// Resize the output to fit the video element.
google.colab.output.setIframeHeight(document.documentElement.scrollHeight, true);
// Wait for Capture to be clicked.
await new Promise((resolve) => capture.onclick = resolve);
const canvas = document.createElement('canvas');
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
canvas.getContext('2d').drawImage(video, 0, 0);
stream.getVideoTracks()[0].stop();
div.remove();
return canvas.toDataURL('image/jpeg', quality);
}
''')
display(js)
data = eval_js('takePhoto({})'.format(quality))
binary = b64decode(data.split(',')[1])
with open(filename, 'wb') as f:
f.write(binary)
return filename
opt = st.selectbox("How do you want to upload the image for classification?",
('Please Select', 'Upload image via link', 'Upload image from device', 'Capture a picture'))
# Image processing based on user selection
image = None
if opt == 'Upload image from device':
file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg'])
if file:
try:
image = cv2.imread(file)
image = cv2.resize(image, (256, 256))
except Exception as e:
st.error(f"Error reading the file: {e}")
elif opt == 'Upload image via link':
img_url = st.text_input('Enter the Image Address')
if st.button('Submit'):
try:
response = urllib.request.urlopen(img_url)
image = cv2.imread(io.BytesIO(response.read()))
image = cv2.resize(image, (256, 256))
except ValueError:
st.error("Please Enter a valid Image Address!")
elif opt == 'Capture a picture':
take_photo()
try:
if image is not None:
st.image(image, width=256, caption='Uploaded Image')
if st.button('Predict'):
img = preprocess(image)
#model = model_arc()
# model.load_weights("classify_model.h5")
print("---------------img-array---------------------")
print(img[np.newaxis, ...])
prediction = model.predict(img[np.newaxis, ...])
print("------------summary------------------------")
print(model.summary())
print("------------------------------------")
print(prediction)
st.info('Hey! The uploaded image has been classified as " {} waste " '.format(labels[np.argmax(prediction[0], axis=-1)]))
def message(img):
if img == 'paper' or 'cardboard' or 'metal' or 'glass':
return (
" therefore your item is recyclable. Please refer to https://www.wm.com/us/en/drop-off-locations to find a drop-off location near you.")
elif img == 'plastic':
return (
' therefore you item may have a chance of being recyclable. Since this model has yet to recognize types of plastics, please refer to https://www.bing.com/ck/a?!&&p=c1474e95017548dfJmltdHM9MTcwMzcyMTYwMCZpZ3VpZD0xNmNjOTFiOS1hMDgwLTY5MmItMzBmNi04MmE1YTE3ODY4NDImaW5zaWQ9NTIyMA&ptn=3&ver=2&hsh=3&fclid=16cc91b9-a080-692b-30f6-82a5a1786842&psq=what+type+of+plastic+can+be+recycled&u=a1aHR0cHM6Ly93d3cucGxhc3RpY3Nmb3JjaGFuZ2Uub3JnL2Jsb2cvd2hpY2gtcGxhc3RpYy1jYW4tYmUtcmVjeWNsZWQ&ntb=1 to check if this item can be recycled.')
else:
return ('Your item is not recyclable. Please discard it safely.')
st.info(message(labels[np.argmax(prediction[0], axis=-1)]))
except Exception as e:
st.info(e)
pass