Spaces:
Running
Running
import tensorflow as tf | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D | |
from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
import numpy as np | |
from PIL import Image | |
def gen_labels(): | |
train = 'Dataset/Train' | |
train_generator = ImageDataGenerator(rescale=1/255) | |
train_generator = train_generator.flow_from_directory(train, | |
target_size=(256, 256), | |
batch_size=32, | |
class_mode='sparse') | |
labels = train_generator.class_indices | |
labels = dict((v, k) for k, v in labels.items()) | |
return labels | |
data_augmentation = tf.keras.Sequential([ | |
tf.keras.layers.experimental.preprocessing.Rescaling(1./127.5, offset= -1), | |
tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"), | |
tf.keras.layers.experimental.preprocessing.RandomRotation(0.2), | |
tf.keras.layers.experimental.preprocessing.RandomZoom(0.2) | |
], name='data_augmentation') | |
#Instantiating the base model | |
input_shape = (256,256,3) | |
base_model = tf.keras.applications.ResNet50V2(include_top=False, input_shape=input_shape) | |
#Making the layers of the model trainable | |
base_model.trainable = True | |
def preprocess(image_or_path): | |
if isinstance(image_or_path, str): # Check if the input is a string (image path) | |
img = Image.open(image_or_path) | |
elif isinstance(image_or_path, np.ndarray): # Check if the input is a numpy array | |
# Convert the numpy array to a PIL Image | |
img = Image.fromarray((image_or_path * 255).astype(np.uint8)) | |
else: | |
raise ValueError("Unsupported input type. Expected string path or numpy array.") | |
# Print image dimensions for debugging | |
print(f"Original image dimensions: {img.size}") | |
# Check image mode | |
if img.mode != "RGB": | |
img = img.convert("RGB") | |
print("Converted image mode to RGB.") | |
try: | |
# Resize the image | |
resized_img = img.resize((256, 256), Image.LANCZOS) | |
# Convert the image to a numpy array | |
img_array = np.array(resized_img) | |
# Normalize if necessary | |
img_array = img_array / 255.0 | |
# Add a batch dimension | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
except Exception as e: | |
print(f"Error encountered: {e}") | |
return None | |
def model_arc(): | |
model = tf.keras.Sequential([ | |
data_augmentation, | |
base_model, | |
tf.keras.layers.GlobalAveragePooling2D(), | |
tf.keras.layers.Dense(6, activation='softmax') | |
]) | |
learning_rate = 0.00001 | |
model.compile( | |
loss='sparse_categorical_crossentropy', | |
optimizer=tf.keras.optimizers.Adam(learning_rate), | |
metrics=['accuracy'] | |
) | |
return model |