Spaces:
Running
Running
import time | |
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
import urllib.request | |
import io | |
from utils import * | |
# Initialize labels and model | |
labels = gen_labels() | |
model = model_arc() # Assuming this function initializes and returns a trained model | |
# Streamlit UI | |
st.markdown(''' | |
<div style="padding-bottom: 20px; padding-top: 20px; padding-left: 5px; padding-right: 5px"> | |
<center><h1>Garbage Segregation</h1></center> | |
</div> | |
''', unsafe_allow_html=True) | |
st.markdown(''' | |
<div> | |
<center><h3>Please upload Waste Image to find its Category</h3></center> | |
</div> | |
''', unsafe_allow_html=True) | |
opt = st.selectbox("How do you want to upload the image for classification?", | |
('Please Select', 'Upload image via link', 'Upload image from device')) | |
# Image processing based on user selection | |
image = None | |
if opt == 'Upload image from device': | |
file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg']) | |
if file: | |
try: | |
image = Image.open(io.BytesIO(file.read())).resize((256, 256), Image.LANCZOS) | |
except Exception as e: | |
st.error(f"Error reading the file: {e}") | |
elif opt == 'Upload image via link': | |
img_url = st.text_input('Enter the Image Address') | |
if st.button('Submit'): | |
try: | |
response = urllib.request.urlopen(img_url) | |
image = Image.open(response).resize((256, 256), Image.LANCZOS) | |
except ValueError: | |
st.error("Please Enter a valid Image Address!") | |
try: | |
if image is not None: | |
st.image(image, width = 300, caption = 'Uploaded Image') | |
if st.button('Predict'): | |
img = preprocess(image) | |
model = model_arc() | |
#model.load_weights("classify_model.h5") | |
prediction = model.predict(img[np.newaxis, ...]) | |
st.info('Hey! The uploaded image has been classified as " {} waste " '.format(labels[np.argmax(prediction[0], axis=-1)])) | |
except Exception as e: | |
st.info(e) | |
pass |