EcoIdentify / app.py
VishnuEcoClim's picture
Update app.py
cefb660
raw
history blame
1.97 kB
import time
import streamlit as st
import numpy as np
from PIL import Image
import urllib.request
import io
from utils import *
# Initialize labels and model
labels = gen_labels()
model = model_arc() # Assuming this function initializes and returns a trained model
# Streamlit UI
st.markdown('''
<div style="padding-bottom: 20px; padding-top: 20px; padding-left: 5px; padding-right: 5px">
<center><h1>Garbage Segregation</h1></center>
</div>
''', unsafe_allow_html=True)
st.markdown('''
<div>
<center><h3>Please upload Waste Image to find its Category</h3></center>
</div>
''', unsafe_allow_html=True)
opt = st.selectbox("How do you want to upload the image for classification?",
('Please Select', 'Upload image via link', 'Upload image from device'))
# Image processing based on user selection
image = None
if opt == 'Upload image from device':
file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg'])
if file:
try:
image = Image.open(io.BytesIO(file.read())).resize((256, 256), Image.LANCZOS)
except Exception as e:
st.error(f"Error reading the file: {e}")
elif opt == 'Upload image via link':
img_url = st.text_input('Enter the Image Address')
if st.button('Submit'):
try:
response = urllib.request.urlopen(img_url)
image = Image.open(response).resize((256, 256), Image.LANCZOS)
except ValueError:
st.error("Please Enter a valid Image Address!")
try:
if image is not None:
st.image(image, width = 300, caption = 'Uploaded Image')
if st.button('Predict'):
img = preprocess(image)
model = model_arc()
#model.load_weights("classify_model.h5")
prediction = model.predict(img[np.newaxis, ...])
st.info('Hey! The uploaded image has been classified as " {} waste " '.format(labels[np.argmax(prediction[0], axis=-1)]))
except Exception as e:
st.info(e)
pass