Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,9 +5,12 @@ import plotly.graph_objs as go
|
|
| 5 |
from io import BytesIO
|
| 6 |
from datasets import load_dataset
|
| 7 |
|
| 8 |
-
df = load_dataset("mmmapms/Forecasts")
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
'Price': 'Real Price',
|
| 12 |
'DNN1': 'Neural Network 1',
|
| 13 |
'DNN2': 'Neural Network 2',
|
|
@@ -21,33 +24,12 @@ df = df.rename(columns={
|
|
| 21 |
'LEAR_Ensemble': 'Regularized Linear Model Ensemble',
|
| 22 |
'Persis': 'Persistence Model',
|
| 23 |
'Hybrid_Ensemble': 'Hybrid Ensemble'
|
| 24 |
-
|
| 25 |
-
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
|
| 26 |
-
df_filtered = df.dropna(subset=['Real Price'])
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
# df = pd.read_csv('Predictions.csv')
|
| 31 |
-
# df = df.rename(columns={
|
| 32 |
-
# 'Price': 'Real Price',
|
| 33 |
-
# 'DNN1': 'Neural Network 1',
|
| 34 |
-
# 'DNN2': 'Neural Network 2',
|
| 35 |
-
# 'DNN3': 'Neural Network 3',
|
| 36 |
-
# 'DNN4': 'Neural Network 4',
|
| 37 |
-
# 'DNN_Ensemble': 'Neural Network Ensemble',
|
| 38 |
-
# 'LEAR56': 'Regularized Linear Model 1',
|
| 39 |
-
# 'LEAR84': 'Regularized Linear Model 2',
|
| 40 |
-
# 'LEAR112': 'Regularized Linear Model 3',
|
| 41 |
-
# 'LEAR730': 'Regularized Linear Model 4',
|
| 42 |
-
# 'LEAR_Ensemble': 'Regularized Linear Model Ensemble',
|
| 43 |
-
# 'Persis': 'Persistence Model',
|
| 44 |
-
# 'Hybrid_Ensemble': 'Hybrid Ensemble'
|
| 45 |
-
#})
|
| 46 |
-
# df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
|
| 47 |
-
# df_filtered = df.dropna(subset=['Real Price'])
|
| 48 |
-
# return df, df_filtered
|
| 49 |
-
|
| 50 |
-
#df, df_filtered = load_data_predictions()
|
| 51 |
|
| 52 |
min_date_allowed_pred = df_filtered['Date'].min().date()
|
| 53 |
max_date_allowed_pred = df_filtered['Date'].max().date()
|
|
|
|
| 5 |
from io import BytesIO
|
| 6 |
from datasets import load_dataset
|
| 7 |
|
|
|
|
| 8 |
|
| 9 |
+
|
| 10 |
+
@st.cache_data
|
| 11 |
+
def load_data_predictions():
|
| 12 |
+
df = pd.read_csv('Predictions.csv')
|
| 13 |
+
df = df.rename(columns={
|
| 14 |
'Price': 'Real Price',
|
| 15 |
'DNN1': 'Neural Network 1',
|
| 16 |
'DNN2': 'Neural Network 2',
|
|
|
|
| 24 |
'LEAR_Ensemble': 'Regularized Linear Model Ensemble',
|
| 25 |
'Persis': 'Persistence Model',
|
| 26 |
'Hybrid_Ensemble': 'Hybrid Ensemble'
|
| 27 |
+
})
|
| 28 |
+
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
|
| 29 |
+
df_filtered = df.dropna(subset=['Real Price'])
|
| 30 |
+
return df, df_filtered
|
| 31 |
+
|
| 32 |
+
df, df_filtered = load_data_predictions()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
min_date_allowed_pred = df_filtered['Date'].min().date()
|
| 35 |
max_date_allowed_pred = df_filtered['Date'].max().date()
|