Spaces:
Sleeping
Sleeping
Create agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from meal_loader import documents
|
2 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_community.llms import HuggingFaceHub
|
5 |
+
from langchain.chains import ConversationalRetrievalChain
|
6 |
+
from langchain.memory import ConversationBufferMemory
|
7 |
+
|
8 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
9 |
+
db = FAISS.from_documents(documents, embeddings)
|
10 |
+
retriever = db.as_retriever(search_kwargs={"k": 3})
|
11 |
+
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={"temperature": 0.3, "max_new_tokens": 500})
|
12 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
13 |
+
|
14 |
+
qa_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)
|
15 |
+
|
16 |
+
def generate_response(message, history, preferences):
|
17 |
+
prompt = f"""
|
18 |
+
You are a meal plan assistant. The user has the following preferences:
|
19 |
+
- Diet: {', '.join(preferences['diet'])}
|
20 |
+
- Goal: {preferences['goal']}
|
21 |
+
- Duration: {preferences['weeks']} week(s)
|
22 |
+
|
23 |
+
User query: {message}
|
24 |
+
"""
|
25 |
+
result = qa_chain({"question": prompt})
|
26 |
+
return result["answer"]
|