Spaces:
Sleeping
Sleeping
Update knowledge_base.py
Browse files- knowledge_base.py +21 -4
knowledge_base.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
# knowledge_base.py
|
2 |
import os
|
3 |
import fitz # PyMuPDF
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.vectorstores import Chroma
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
@@ -9,28 +9,45 @@ from langchain.docstore.document import Document
|
|
9 |
CHROMA_DIR = "chroma"
|
10 |
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def load_and_chunk_pdfs(folder_path):
|
14 |
documents = []
|
|
|
15 |
for filename in os.listdir(folder_path):
|
16 |
if filename.endswith(".pdf"):
|
17 |
path = os.path.join(folder_path, filename)
|
|
|
|
|
|
|
|
|
|
|
18 |
doc = fitz.open(path)
|
19 |
-
text = "\n".join(page.get_text() for page in doc)
|
20 |
documents.append(Document(page_content=text, metadata={"source": filename}))
|
21 |
|
22 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
23 |
chunks = splitter.split_documents(documents)
|
24 |
return chunks
|
25 |
|
26 |
-
|
27 |
def create_vectorstore(chunks):
|
28 |
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
29 |
db = Chroma.from_documents(chunks, embeddings, persist_directory=CHROMA_DIR)
|
30 |
db.persist()
|
31 |
return db
|
32 |
|
33 |
-
|
34 |
def load_vectorstore():
|
35 |
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
36 |
return Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
|
|
|
|
|
1 |
import os
|
2 |
import fitz # PyMuPDF
|
3 |
+
import requests
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.vectorstores import Chroma
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
9 |
CHROMA_DIR = "chroma"
|
10 |
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
11 |
|
12 |
+
# Set this to your actual file on HF
|
13 |
+
HF_FILE_URL = "https://huggingface.co/spaces/DurgaDeepak/eat2fit/resolve/main/meal_plans/Lafayette%2C%20Natasha%20-%20Fit%20By%20Tasha%20High%20Protein%20Recipes%20_%2052%20High%20Protein%20Clean%20Recipes%20%26%20Meal%20Plan%20(2021).pdf"
|
14 |
+
|
15 |
+
def ensure_pdf_downloaded(local_path: str, url: str):
|
16 |
+
if not os.path.exists(local_path):
|
17 |
+
print(f"Downloading large PDF from: {url}")
|
18 |
+
response = requests.get(url)
|
19 |
+
if response.status_code == 200:
|
20 |
+
with open(local_path, "wb") as f:
|
21 |
+
f.write(response.content)
|
22 |
+
print("PDF downloaded successfully.")
|
23 |
+
else:
|
24 |
+
raise RuntimeError(f"Failed to download PDF: {response.status_code}")
|
25 |
|
26 |
def load_and_chunk_pdfs(folder_path):
|
27 |
documents = []
|
28 |
+
|
29 |
for filename in os.listdir(folder_path):
|
30 |
if filename.endswith(".pdf"):
|
31 |
path = os.path.join(folder_path, filename)
|
32 |
+
|
33 |
+
# Try downloading the file if it's missing or an LFS pointer
|
34 |
+
if os.path.getsize(path) < 1000: # LFS pointer files are tiny
|
35 |
+
ensure_pdf_downloaded(path, HF_FILE_URL)
|
36 |
+
|
37 |
doc = fitz.open(path)
|
38 |
+
text = "\n".join(page.get_text() for page in doc if page.get_text())
|
39 |
documents.append(Document(page_content=text, metadata={"source": filename}))
|
40 |
|
41 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
42 |
chunks = splitter.split_documents(documents)
|
43 |
return chunks
|
44 |
|
|
|
45 |
def create_vectorstore(chunks):
|
46 |
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
47 |
db = Chroma.from_documents(chunks, embeddings, persist_directory=CHROMA_DIR)
|
48 |
db.persist()
|
49 |
return db
|
50 |
|
|
|
51 |
def load_vectorstore():
|
52 |
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
53 |
return Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
|