DurgaDeepak commited on
Commit
bd16fb2
·
verified ·
1 Parent(s): bc4b8ef

Update knowledge_base.py

Browse files
Files changed (1) hide show
  1. knowledge_base.py +21 -4
knowledge_base.py CHANGED
@@ -1,6 +1,6 @@
1
- # knowledge_base.py
2
  import os
3
  import fitz # PyMuPDF
 
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain.vectorstores import Chroma
6
  from langchain.embeddings import HuggingFaceEmbeddings
@@ -9,28 +9,45 @@ from langchain.docstore.document import Document
9
  CHROMA_DIR = "chroma"
10
  MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  def load_and_chunk_pdfs(folder_path):
14
  documents = []
 
15
  for filename in os.listdir(folder_path):
16
  if filename.endswith(".pdf"):
17
  path = os.path.join(folder_path, filename)
 
 
 
 
 
18
  doc = fitz.open(path)
19
- text = "\n".join(page.get_text() for page in doc)
20
  documents.append(Document(page_content=text, metadata={"source": filename}))
21
 
22
  splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
23
  chunks = splitter.split_documents(documents)
24
  return chunks
25
 
26
-
27
  def create_vectorstore(chunks):
28
  embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
29
  db = Chroma.from_documents(chunks, embeddings, persist_directory=CHROMA_DIR)
30
  db.persist()
31
  return db
32
 
33
-
34
  def load_vectorstore():
35
  embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
36
  return Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
 
 
1
  import os
2
  import fitz # PyMuPDF
3
+ import requests
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain.vectorstores import Chroma
6
  from langchain.embeddings import HuggingFaceEmbeddings
 
9
  CHROMA_DIR = "chroma"
10
  MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
11
 
12
+ # Set this to your actual file on HF
13
+ HF_FILE_URL = "https://huggingface.co/spaces/DurgaDeepak/eat2fit/resolve/main/meal_plans/Lafayette%2C%20Natasha%20-%20Fit%20By%20Tasha%20High%20Protein%20Recipes%20_%2052%20High%20Protein%20Clean%20Recipes%20%26%20Meal%20Plan%20(2021).pdf"
14
+
15
+ def ensure_pdf_downloaded(local_path: str, url: str):
16
+ if not os.path.exists(local_path):
17
+ print(f"Downloading large PDF from: {url}")
18
+ response = requests.get(url)
19
+ if response.status_code == 200:
20
+ with open(local_path, "wb") as f:
21
+ f.write(response.content)
22
+ print("PDF downloaded successfully.")
23
+ else:
24
+ raise RuntimeError(f"Failed to download PDF: {response.status_code}")
25
 
26
  def load_and_chunk_pdfs(folder_path):
27
  documents = []
28
+
29
  for filename in os.listdir(folder_path):
30
  if filename.endswith(".pdf"):
31
  path = os.path.join(folder_path, filename)
32
+
33
+ # Try downloading the file if it's missing or an LFS pointer
34
+ if os.path.getsize(path) < 1000: # LFS pointer files are tiny
35
+ ensure_pdf_downloaded(path, HF_FILE_URL)
36
+
37
  doc = fitz.open(path)
38
+ text = "\n".join(page.get_text() for page in doc if page.get_text())
39
  documents.append(Document(page_content=text, metadata={"source": filename}))
40
 
41
  splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
42
  chunks = splitter.split_documents(documents)
43
  return chunks
44
 
 
45
  def create_vectorstore(chunks):
46
  embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
47
  db = Chroma.from_documents(chunks, embeddings, persist_directory=CHROMA_DIR)
48
  db.persist()
49
  return db
50
 
 
51
  def load_vectorstore():
52
  embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
53
  return Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)