Spaces:
Sleeping
Sleeping
Update knowledge_base.py
Browse files- knowledge_base.py +14 -2
knowledge_base.py
CHANGED
@@ -6,7 +6,8 @@ from langchain.vectorstores import Chroma
|
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.docstore.document import Document
|
8 |
|
9 |
-
CHROMA_DIR = "chroma"
|
|
|
10 |
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
11 |
|
12 |
# Set this to your actual file on HF
|
@@ -49,4 +50,15 @@ def create_vectorstore(chunks):
|
|
49 |
|
50 |
def load_vectorstore():
|
51 |
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.docstore.document import Document
|
8 |
|
9 |
+
CHROMA_DIR = os.path.abspath("chroma")
|
10 |
+
print("📂 Loading vectorstore from:", CHROMA_DIR)
|
11 |
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
12 |
|
13 |
# Set this to your actual file on HF
|
|
|
50 |
|
51 |
def load_vectorstore():
|
52 |
embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME)
|
53 |
+
db = Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
|
54 |
+
|
55 |
+
try:
|
56 |
+
sample = db.get()["documents"][:5]
|
57 |
+
print("✅ Sample documents from vectorstore:")
|
58 |
+
for i, s in enumerate(sample):
|
59 |
+
print(f"[{i+1}] {s[:100]}...") # print first 100 chars
|
60 |
+
except Exception as e:
|
61 |
+
print(f"❌ Error loading documents: {e}")
|
62 |
+
|
63 |
+
return db
|
64 |
+
|