Spaces:
Sleeping
Sleeping
Rename meal_loader.py to chatbot_logic.py
Browse files- chatbot_logic.py +36 -0
- meal_loader.py +0 -11
chatbot_logic.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
2 |
+
from langchain.vectorstores import Chroma
|
3 |
+
from langchain.llms import HuggingFaceHub
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from knowledge_base import load_vectorstore
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load vectorstore with meal plan embeddings
|
9 |
+
db = load_vectorstore()
|
10 |
+
retriever = db.as_retriever()
|
11 |
+
|
12 |
+
# Load LLM (HuggingFace Inference API)
|
13 |
+
llm = HuggingFaceHub(
|
14 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
15 |
+
model_kwargs={"temperature": 0.3, "max_new_tokens": 512}
|
16 |
+
)
|
17 |
+
|
18 |
+
# Build Retrieval QA Chain
|
19 |
+
qa_chain = RetrievalQA.from_chain_type(
|
20 |
+
llm=llm,
|
21 |
+
retriever=retriever,
|
22 |
+
chain_type="stuff"
|
23 |
+
)
|
24 |
+
|
25 |
+
def get_bot_response(query):
|
26 |
+
"""
|
27 |
+
Accepts a user query, runs through RAG chain, and returns a response.
|
28 |
+
"""
|
29 |
+
if not query:
|
30 |
+
return "Please ask something."
|
31 |
+
|
32 |
+
try:
|
33 |
+
result = qa_chain.run(query)
|
34 |
+
return result
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error processing query: {str(e)}"
|
meal_loader.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from langchain_community.document_loaders import PyMuPDFLoader
|
3 |
-
|
4 |
-
documents = []
|
5 |
-
meal_dir = "meal_plans"
|
6 |
-
|
7 |
-
for filename in os.listdir(meal_dir):
|
8 |
-
if filename.endswith(".pdf"):
|
9 |
-
path = os.path.join(meal_dir, filename)
|
10 |
-
loader = PyMuPDFLoader(path)
|
11 |
-
documents.extend(loader.load())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|