import os import numpy as np from PIL import Image, ImageDraw import logging from ultralytics import YOLO from utils.model_downloader import download_model_if_needed logger = logging.getLogger(__name__) class ObjectDetector: """ Generalized Object Detection Wrapper for YOLOv5, YOLOv8, and future variants. """ def __init__(self, model_key="yolov5n-seg", weights_dir="models/detection/weights", device="cpu"): """ Initialize the Object Detection model. Args: model_key (str): Model identifier as defined in model_downloader.py. weights_dir (str): Directory to store/download model weights. device (str): Inference device ("cpu" or "cuda"). """ weights_path = os.path.join(weights_dir, f"{model_key}.pt") download_model_if_needed(model_key, weights_path) logger.info(f"Loading Object Detection model '{model_key}' from {weights_path}") self.device = device self.model = YOLO(weights_path) def predict(self, image: Image.Image): """ Run object detection. Args: image (PIL.Image.Image): Input image. Returns: List[Dict]: List of detected objects with class name, confidence, and bbox. """ logger.info("Running object detection") results = self.model(image) detections = [] for r in results: for box in r.boxes: detections.append({ "class_name": r.names[int(box.cls)], "confidence": float(box.conf), "bbox": box.xyxy[0].tolist() }) logger.info(f"Detected {len(detections)} objects") return detections def draw(self, image: Image.Image, detections, alpha=0.5): """ Draw bounding boxes on image. Args: image (PIL.Image.Image): Input image. detections (List[Dict]): Detection results. alpha (float): Blend strength. Returns: PIL.Image.Image: Image with bounding boxes drawn. """ overlay = image.copy() draw = ImageDraw.Draw(overlay) for det in detections: bbox = det["bbox"] label = f'{det["class_name"]} {det["confidence"]:.2f}' draw.rectangle(bbox, outline="red", width=2) draw.text((bbox[0], bbox[1]), label, fill="red") return Image.blend(image, overlay, alpha)