import logging from PIL import Image, ImageDraw from huggingface_hub import hf_hub_download from ultralytics import YOLO import os logger = logging.getLogger(__name__) class ObjectDetector: def __init__(self, model_key="yolov8n.pt", device="cpu"): self.device = device self.model = None self.model_key = model_key.lower().replace(".pt", "") self.repo_map = { "yolov8n": ("ultralytics/yolov8", "yolov8n.pt"), "yolov8s": ("ultralytics/yolov8", "yolov8s.pt"), "yolov8l": ("ultralytics/yolov8", "yolov8l.pt"), "yolov11b": ("Ultralytics/YOLO11", "yolov11b.pt"), } def load_model(self): if self.model is not None: return if self.model_key not in self.repo_map: raise ValueError(f"Unsupported model key: {self.model_key}") repo_id, filename = self.repo_map[self.model_key] weights_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir="models/detection/weights") self.model = YOLO(weights_path) # ✅ ZeroGPU-safe: runtime only def predict(self, image: Image.Image, conf_threshold=0.25): self.load_model() results = self.model(image) detections = [] for r in results: for box in r.boxes: detections.append({ "class_name": r.names[int(box.cls)], "confidence": float(box.conf), "bbox": box.xyxy[0].tolist() }) return detections def draw(self, image: Image.Image, detections, alpha=0.5): overlay = image.copy() draw = ImageDraw.Draw(overlay) for det in detections: bbox = det["bbox"] label = f'{det["class_name"]} {det["confidence"]:.2f}' draw.rectangle(bbox, outline="red", width=2) draw.text((bbox[0], bbox[1]), label, fill="red") return Image.blend(image, overlay, alpha)