Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import logging | |
from huggingface_hub import hf_hub_download | |
# Configure logger | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
# Supported Hugging Face models (key → repo + file) | |
HF_MODELS = { | |
# Depth Estimation | |
"dpt_hybrid_384": ("isl-org/MiDaS", "dpt_hybrid_384.pt"), | |
"midas_v21_small_256": ("isl-org/MiDaS", "midas_v21_small_256.pt"), | |
"midas_v21_384": ("isl-org/MiDaS", "midas_v21_384.pt"), | |
"dpt_swin2_large_384": ("isl-org/MiDaS", "dpt_swin2_large_384.pt"), | |
"dpt_beit_large_512": ("isl-org/MiDaS", "dpt_beit_large_512.pt"), | |
# Object Detection | |
"yolov8n": ("ultralytics/yolov8", "yolov8n.pt"), | |
"yolov8s": ("ultralytics/yolov8", "yolov8s.pt"), | |
"yolov8l": ("ultralytics/yolov8", "yolov8l.pt"), | |
"yolov11b": ("Ultralytics/YOLO11", "yolov11b.pt"), | |
"rtdetr": ("IDEA-Research/RT-DETR", "rtdetr_r50vd_detr.pth"), | |
# Semantic Segmentation | |
"segformer_b0": ("nvidia/segformer-b0-finetuned-ade-512-512", "model.safetensors"), | |
"segformer_b5": ("nvidia/segformer-b5-finetuned-ade-512-512", "model.safetensors"), | |
"deeplabv3_resnet50": ("facebook/deeplabv3-resnet50", "pytorch_model.bin"), | |
} | |
def download_model_if_needed(model_key: str, save_path: str): | |
""" | |
Downloads the model from Hugging Face Hub if it's not already present. | |
Args: | |
model_key (str): Key from HF_MODELS dict. | |
save_path (str): Local path to store the downloaded model. | |
Raises: | |
ValueError: If the model_key is not supported. | |
""" | |
if model_key not in HF_MODELS: | |
logger.error(f" Model key '{model_key}' not found in registry.") | |
raise ValueError(f"Unsupported model key: {model_key}") | |
repo_id, filename = HF_MODELS[model_key] | |
if os.path.exists(save_path): | |
logger.info(f" Model '{model_key}' already exists at '{save_path}'. Skipping download.") | |
return | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
logger.info(f" Downloading '{model_key}' from Hugging Face Hub...") | |
try: | |
hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
cache_dir=os.path.dirname(save_path), | |
force_download=True # Set to False later if you want to cache | |
) | |
logger.info(f" Successfully downloaded '{model_key}' to '{save_path}'") | |
except Exception as e: | |
logger.error(f" Download failed for '{model_key}': {e}") | |
raise | |