Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import torch | |
from PIL import Image | |
import numpy as np | |
from torchvision import transforms | |
from torchvision.models.segmentation import deeplabv3_resnet50 | |
from transformers import ( | |
SegformerForSemanticSegmentation, | |
SegformerFeatureExtractor, | |
AutoProcessor, | |
CLIPSegForImageSegmentation, | |
) | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
class Segmenter: | |
""" | |
Generalized Semantic Segmentation Wrapper for SegFormer, DeepLabV3, and CLIPSeg. | |
""" | |
def __init__(self, model_key="nvidia/segformer-b0-finetuned-ade-512-512", device="cpu"): | |
""" | |
Args: | |
model_key (str): HF model identifier or 'deeplabv3_resnet50'. | |
device (str): 'cpu' or 'cuda'. | |
""" | |
logger.info(f"Initializing Segmenter for model '{model_key}' on {device}") | |
self.model_key = model_key.lower() | |
self.device = device | |
self.model = None | |
self.processor = None # for transformers-based models | |
def _load_model(self): | |
""" | |
Lazy-load the model & processor based on model_key. | |
""" | |
if self.model is not None: | |
return | |
# SegFormer | |
if "segformer" in self.model_key: | |
self.model = SegformerForSemanticSegmentation.from_pretrained(self.model_key).to(self.device).eval() | |
self.processor = SegformerFeatureExtractor.from_pretrained(self.model_key) | |
# DeepLabV3 | |
elif self.model_key == "deeplabv3_resnet50": | |
self.model = deeplabv3_resnet50(pretrained=True).to(self.device).eval() | |
self.processor = None | |
# CLIPSeg | |
elif "clipseg" in self.model_key: | |
self.model = CLIPSegForImageSegmentation.from_pretrained(self.model_key).to(self.device).eval() | |
self.processor = AutoProcessor.from_pretrained(self.model_key) | |
else: | |
raise ValueError(f"Unsupported segmentation model key: '{self.model_key}'") | |
logger.info(f"Loaded segmentation model '{self.model_key}'") | |
def predict(self, image: Image.Image, prompt: str = "", **kwargs) -> np.ndarray: | |
""" | |
Perform segmentation. | |
Args: | |
image (PIL.Image.Image): Input. | |
prompt (str): Only used for CLIPSeg. | |
Returns: | |
np.ndarray: Segmentation mask (H×W). | |
""" | |
self._load_model() | |
# SegFormer path | |
if "segformer" in self.model_key: | |
inputs = self.processor(images=image, return_tensors="pt").to(self.device) | |
outputs = self.model(**inputs) | |
mask = outputs.logits.argmax(dim=1).squeeze().cpu().numpy() | |
return mask | |
# DeepLabV3 path | |
if self.model_key == "deeplabv3_resnet50": | |
tf = transforms.ToTensor() | |
inp = tf(image).unsqueeze(0).to(self.device) | |
with torch.no_grad(): | |
out = self.model(inp)["out"] | |
mask = out.argmax(1).squeeze().cpu().numpy() | |
return mask | |
# CLIPSeg path | |
if "clipseg" in self.model_key: | |
# CLIPSeg expects both text and image | |
inputs = self.processor( | |
text=[prompt], # list of prompts | |
images=[image], # list of images | |
return_tensors="pt" | |
).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
# outputs.logits shape: (batch=1, height, width) | |
mask = outputs.logits.squeeze(0).cpu().numpy() | |
# Optionally threshold to binary: | |
# mask = (mask > kwargs.get("threshold", 0.5)).astype(np.uint8) | |
return mask | |
raise RuntimeError("Unreachable segmentation branch") | |
def draw(self, image: Image.Image, mask: np.ndarray, alpha=0.5) -> Image.Image: | |
""" | |
Overlay the segmentation mask on the input image. | |
Args: | |
image (PIL.Image.Image): Original. | |
mask (np.ndarray): Segmentation mask. | |
alpha (float): Blend strength. | |
Returns: | |
PIL.Image.Image: Blended output. | |
""" | |
logger.info("Drawing segmentation overlay") | |
# Normalize mask to 0–255 | |
gray = ((mask - mask.min()) / (mask.ptp()) * 255).astype(np.uint8) | |
mask_img = Image.fromarray(gray).convert("L").resize(image.size) | |
# Make it RGB | |
color_mask = Image.merge("RGB", (mask_img, mask_img, mask_img)) | |
return Image.blend(image, color_mask, alpha) | |