UVIS / models /segmentation /segmenter.py
DurgaDeepak's picture
Update models/segmentation/segmenter.py
08d991a verified
raw
history blame
3.26 kB
import logging
import torch
from PIL import Image
import numpy as np
from torchvision import transforms
from torchvision.models.segmentation import deeplabv3_resnet50
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
logger = logging.getLogger(__name__)
class Segmenter:
"""
Generalized Semantic Segmentation Wrapper for SegFormer and DeepLabV3.
"""
def __init__(self, model_key="nvidia/segformer-b0-finetuned-ade-512-512", device="cpu"):
"""
Initialize the segmentation model.
Args:
model_key (str): Model identifier, e.g., Hugging Face model id or 'deeplabv3_resnet50'.
device (str): Inference device ("cpu" or "cuda").
"""
logger.info(f"Initializing segmenter with model: {model_key}")
self.device = device
self.model_key = model_key
self.model, self.processor = self._load_model()
def _load_model(self):
"""
Load the segmentation model and processor.
Returns:
Tuple[torch.nn.Module, Optional[Processor]]
"""
if "segformer" in self.model_key:
model = SegformerForSemanticSegmentation.from_pretrained(self.model_key).to(self.device)
processor = SegformerFeatureExtractor.from_pretrained(self.model_key)
return model, processor
elif self.model_key == "deeplabv3_resnet50":
model = deeplabv3_resnet50(pretrained=True).to(self.device).eval()
return model, None
else:
raise ValueError(f"Unsupported model key: {self.model_key}")
def predict(self, image: Image.Image, **kwargs):
"""
Perform segmentation on the input image.
Args:
image (PIL.Image.Image): Input image.
Returns:
np.ndarray: Segmentation mask.
"""
logger.info("Running segmentation")
if "segformer" in self.model_key:
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
outputs = self.model(**inputs)
mask = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
return mask
elif self.model_key == "deeplabv3_resnet50":
transform = transforms.Compose([
transforms.ToTensor(),
])
inputs = transform(image).unsqueeze(0).to(self.device)
with torch.no_grad():
outputs = self.model(inputs)["out"]
mask = outputs.argmax(1).squeeze().cpu().numpy()
return mask
def draw(self, image: Image.Image, mask: np.ndarray, alpha=0.5):
"""
Overlay the segmentation mask on the input image.
Args:
image (PIL.Image.Image): Original image.
mask (np.ndarray): Segmentation mask.
alpha (float): Blend strength.
Returns:
PIL.Image.Image: Image with mask overlay.
"""
logger.info("Drawing segmentation overlay")
mask_img = Image.fromarray((mask * 255 / mask.max()).astype(np.uint8)).convert("L").resize(image.size)
mask_colored = Image.merge("RGB", (mask_img, mask_img, mask_img))
return Image.blend(image, mask_colored, alpha)