Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import logging | |
from PIL import Image, ImageDraw | |
from huggingface_hub import hf_hub_download | |
class ObjectDetector: | |
def __init__(self, model_key="yolov8n", device="cpu"): | |
self.device = device | |
self.model = None | |
self.model_key = model_key.lower().replace(".pt", "") | |
hf_map = { | |
"yolov8n": ("ultralytics/yolov8", "yolov8n.pt"), | |
"yolov8s": ("ultralytics/yolov8", "yolov8s.pt"), | |
"yolov8l": ("ultralytics/yolov8", "yolov8l.pt"), | |
"yolov11b": ("Ultralytics/YOLO11", "yolov11b.pt"), | |
} | |
if self.model_key not in hf_map: | |
raise ValueError(f"Unsupported model key: {self.model_key}") | |
repo_id, filename = hf_map[self.model_key] | |
self.weights_path = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
cache_dir="models/detection/weights", | |
force_download=False | |
) | |
def load_model(self): | |
if self.model is None: | |
import torch # Safe to import here | |
from ultralytics import YOLO # Defer import | |
# FORCE: Avoid triggering CUDA by setting env var | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" if self.device == "cpu" else "" | |
# Initialize model | |
self.model = YOLO(self.weights_path) | |
# Move to CUDA only if necessary and safe | |
if self.device == "cuda" and torch.cuda.is_available(): | |
self.model.to("cuda") | |
return self | |
def predict(self, image: Image.Image, conf_threshold=0.25): | |
self.load_model() | |
results = self.model(image) | |
detections = [] | |
for r in results: | |
for box in r.boxes: | |
detections.append({ | |
"class_name": r.names[int(box.cls)], | |
"confidence": float(box.conf), | |
"bbox": box.xyxy[0].tolist() | |
}) | |
return detections | |