File size: 5,843 Bytes
86f4d8f
 
 
595fad2
 
 
 
205a6cf
595fad2
 
 
 
 
3a7d751
595fad2
 
 
 
 
 
eb9703e
 
595fad2
 
eb9703e
 
595fad2
 
 
eb9703e
 
595fad2
 
 
 
 
 
 
 
 
 
86f4d8f
eb9703e
86f4d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9a80a
86f4d8f
 
5b19714
a3c2125
86f4d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import logging
import time
import timeout_decorator
import io
import zipfile
import json
import cv2
import numpy as np
from PIL import Image

from registry import get_model
from core.describe_scene import describe_scene
from utils.helpers import generate_session_id, log_runtime

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Model mappings
DETECTION_MODEL_MAP = {
    "YOLOv5-Nano": "yolov5n",
    "YOLOv5-Small": "yolov5s",
    "YOLOv8-Small": "yolov8s",
    "YOLOv8-Large": "yolov8l",
    "YOLOv11-Beta": "yolov11b",
    "RT-DETR": "rtdetr"
}

SEGMENTATION_MODEL_MAP = {
    "SegFormer-B0": "segformer_b0",
    "SegFormer-B5": "segformer_b5",
    "DeepLabV3-ResNet50": "deeplabv3_resnet50"
}

DEPTH_MODEL_MAP = {
    "MiDaS v21 Small 256": "midas_v21_small_256",
    "MiDaS v21 384": "midas_v21_384",
    "DPT Hybrid 384": "dpt_hybrid_384",
    "DPT Swin2 Large 384": "dpt_swin2_large_384",
    "DPT Beit Large 512": "dpt_beit_large_512"
}


@timeout_decorator.timeout(35, use_signals=False)  # 35 sec limit per image
def process_image(
    image: Image.Image,
    run_det: bool,
    det_model: str,
    det_confidence: float,
    run_seg: bool,
    seg_model: str,
    run_depth: bool,
    depth_model: str,
    blend: float
):
    """
    Runs selected perception tasks on the input image and packages results.
    Args:
        image (PIL.Image): Input image.
        run_det (bool): Run object detection.
        det_model (str): Detection model key.
        det_confidence (float): Detection confidence threshold.
        run_seg (bool): Run segmentation.
        seg_model (str): Segmentation model key.
        run_depth (bool): Run depth estimation.
        depth_model (str): Depth model key.
        blend (float): Overlay blend alpha (0.0 - 1.0).
    Returns:
        Tuple[Image, dict, Tuple[str, bytes]]: Final image, scene JSON, and downloadable ZIP.
    """
    logger.info("Starting image processing pipeline.")
    start_time = time.time()
    outputs, scene = {}, {}
    combined_np = np.array(image)

    try:
        # Detection
        if run_det:
            if run_det:
            logger.info(f"Running detection with model: {det_model}")
            load_start = time.time()
            model = get_model("detection", DETECTION_MODEL_MAP[det_model], device="cpu")
            model.load_model()
            logger.info(f"{det_model} detection model loaded in {time.time() - load_start:.2f} seconds.")
            boxes = model.predict(image, conf_threshold=det_confidence)
            overlay = model.draw(image, boxes)
            combined_np = np.array(overlay)
            buf = io.BytesIO()
            overlay.save(buf, format="PNG")
            outputs["detection.png"] = buf.getvalue()
            scene["detection"] = boxes

        # Segmentation
        if run_seg:
            logger.info(f"Running segmentation with model: {seg_model}")
            load_start = time.time()
            model = get_model("segmentation", SEGMENTATION_MODEL_MAP[seg_model], device="cpu")
            logger.info(f"{seg_model} segmentation model loaded in {time.time() - load_start:.2f} seconds.")
            mask = model.predict(image)
            overlay = model.draw(image, mask, alpha=blend)
            combined_np = cv2.addWeighted(combined_np, 1 - blend, np.array(overlay), blend, 0)
            buf = io.BytesIO()
            overlay.save(buf, format="PNG")
            outputs["segmentation.png"] = buf.getvalue()
            scene["segmentation"] = mask.tolist()

        # Depth Estimation
        if run_depth:
            logger.info(f"Running depth estimation with model: {depth_model}")
            load_start = time.time()
            model = get_model("depth", DEPTH_MODEL_MAP[depth_model], device="cpu")
            logger.info(f"{depth_model} depth model loaded in {time.time() - load_start:.2f} seconds.")
            dmap = model.predict(image)
            norm_dmap = ((dmap - dmap.min()) / (dmap.ptp()) * 255).astype(np.uint8)
            d_pil = Image.fromarray(norm_dmap)
            combined_np = cv2.addWeighted(combined_np, 1 - blend, np.array(d_pil.convert("RGB")), blend, 0)
            buf = io.BytesIO()
            d_pil.save(buf, format="PNG")
            outputs["depth_map.png"] = buf.getvalue()
            scene["depth"] = dmap.tolist()

        # Final image overlay
        final_img = Image.fromarray(combined_np)
        buf = io.BytesIO()
        final_img.save(buf, format="PNG")
        outputs["scene_blueprint.png"] = buf.getvalue()

        # Scene description
        try:
            scene_json = describe_scene(**scene)
        except Exception as e:
            logger.warning(f"describe_scene failed: {e}")
            scene_json = {"error": str(e)}
        telemetry = {
        "session_id": generate_session_id(),
        "runtime_sec": round(log_runtime(start_time), 2),
        "used_models": {
            "detection": det_model if run_det else None,
            "segmentation": seg_model if run_seg else None,
            "depth": depth_model if run_depth else None
            }
        }
        scene_json["telemetry"] = telemetry

        outputs["scene_description.json"] = json.dumps(scene_json, indent=2).encode("utf-8")

        # ZIP file creation
        zip_buf = io.BytesIO()
        with zipfile.ZipFile(zip_buf, "w") as zipf:
            for name, data in outputs.items():
                zipf.writestr(name, data)

        elapsed = log_runtime(start_time)
        logger.info(f"Image processing completed in {elapsed:.2f} seconds.")

        return final_img, scene_json, ("uvis_results.zip", zip_buf.getvalue())

    except Exception as e:
        logger.error(f"Error in processing pipeline: {e}")
        return None, {"error": str(e)}, None