Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,385 Bytes
f289d8a 64ed036 a9d8551 f289d8a 49d2559 a9d8551 64ed036 f289d8a 64ed036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
# UVIS - Gradio App with Upload, URL & Video Support
"""
This script launches the UVIS (Unified Visual Intelligence System) as a Gradio Web App.
Supports image, video, and URL-based media inputs for detection, segmentation, and depth estimation.
Outputs include scene blueprint, structured JSON, and downloadable results.
"""
import gradio as gr
from PIL import Image
import numpy as np
import os
import io
import zipfile
import json
import tempfile
import logging
import cv2
import requests
from urllib.parse import urlparse
from registry import get_model
from core.describe_scene import describe_scene
import uuid
import time
import timeout_decorator
import socket
import ipaddress
from huggingface_hub import hf_hub_download
import spaces
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Model mappings
DETECTION_MODEL_MAP = {
"YOLOv5-Nano": "yolov5n-seg",
"YOLOv5-Small": "yolov5s-seg",
"YOLOv8-Small": "yolov8s",
"YOLOv8-Large": "yolov8l",
"RT-DETR": "rtdetr" # For future support
}
SEGMENTATION_MODEL_MAP = {
"SegFormer-B0": "nvidia/segformer-b0-finetuned-ade-512-512",
"SegFormer-B5": "nvidia/segformer-b5-finetuned-ade-512-512",
"DeepLabV3-ResNet50": "deeplabv3_resnet50"
}
DEPTH_MODEL_MAP = {
"MiDaS v21 Small 256": "midas_v21_small_256",
"MiDaS v21 384": "midas_v21_384",
"DPT Hybrid 384": "dpt_hybrid_384",
"DPT Swin2 Large 384": "dpt_swin2_large_384",
"DPT Beit Large 512": "dpt_beit_large_512"
}
# Resource Limits
MAX_IMAGE_MB = 5
MAX_IMAGE_RES = (1920, 1080)
MAX_VIDEO_MB = 50
MAX_VIDEO_DURATION = 30 # seconds
@spaces.GPU
def preload_models():
"""
This function is needed to activate ZeroGPU. It must be decorated with @spaces.GPU.
It can be used to warm up models or load them into memory.
"""
from registry import get_model
print("Warming up models for ZeroGPU...")
get_model("detection", "yolov5n-seg", device="cpu")
get_model("segmentation", "deeplabv3_resnet50", device="cpu")
get_model("depth", "midas_v21_small_256", device="cpu")
# Utility Functions
def format_error(message):
"""Formats error messages for consistent user feedback."""
return {"error": message}
def toggle_visibility(show, *components):
"""Toggles visibility for multiple Gradio components."""
return [gr.update(visible=show) for _ in components]
def generate_session_id():
"""Generates a unique session ID for tracking inputs."""
return str(uuid.uuid4())
def log_runtime(start_time):
"""Logs the runtime of a process."""
elapsed_time = time.time() - start_time
logger.info(f"Process completed in {elapsed_time:.2f} seconds.")
return elapsed_time
def is_public_ip(url):
"""
Checks whether the resolved IP address of a URL is public (non-local).
Prevents SSRF by blocking internal addresses like 127.0.0.1 or 192.168.x.x.
"""
try:
hostname = urlparse(url).hostname
ip = socket.gethostbyname(hostname)
ip_obj = ipaddress.ip_address(ip)
return ip_obj.is_global # Only allow globally routable IPs
except Exception as e:
logger.warning(f"URL IP validation failed: {e}")
return False
def fetch_media_from_url(url):
"""
Downloads media from a URL. Supports images and videos.
Returns PIL.Image or video file path.
"""
logger.info(f"Fetching media from URL: {url}")
if not is_public_ip(url):
logger.warning("Blocked non-public URL request (possible SSRF).")
return None
try:
parsed_url = urlparse(url)
ext = os.path.splitext(parsed_url.path)[-1].lower()
headers = {"User-Agent": "Mozilla/5.0"}
r = requests.get(url, headers=headers, timeout=10)
if r.status_code != 200 or len(r.content) > 50 * 1024 * 1024:
logger.warning(f"Download failed or file too large.")
return None
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=ext)
tmp_file.write(r.content)
tmp_file.close()
if ext in [".jpg", ".jpeg", ".png"]:
return Image.open(tmp_file.name).convert("RGB")
elif ext in [".mp4", ".avi", ".mov"]:
return tmp_file.name
else:
logger.warning("Unsupported file type from URL.")
return None
except Exception as e:
logger.error(f"URL fetch failed: {e}")
return None
# Input Validation Functions
def validate_image(img):
"""
Validates the uploaded image based on size and resolution limits.
Args:
img (PIL.Image.Image): Image to validate.
Returns:
Tuple[bool, str or None]: (True, None) if valid; (False, reason) otherwise.
"""
logger.info("Validating uploaded image.")
try:
buffer = io.BytesIO()
img.save(buffer, format="PNG")
size_mb = len(buffer.getvalue()) / (1024 * 1024)
if size_mb > MAX_IMAGE_MB:
logger.warning("Image exceeds size limit of 5MB.")
return False, "Image exceeds 5MB limit."
if img.width > MAX_IMAGE_RES[0] or img.height > MAX_IMAGE_RES[1]:
logger.warning("Image resolution exceeds 1920x1080.")
return False, "Image resolution exceeds 1920x1080."
logger.info("Image validation passed.")
return True, None
except Exception as e:
logger.error(f"Error validating image: {e}")
return False, str(e)
def validate_video(path):
"""
Validates the uploaded video based on size and duration limits.
Args:
path (str): Path to the video file.
Returns:
Tuple[bool, str or None]: (True, None) if valid; (False, reason) otherwise.
"""
logger.info(f"Validating video file at: {path}")
try:
size_mb = os.path.getsize(path) / (1024 * 1024)
if size_mb > MAX_VIDEO_MB:
logger.warning("Video exceeds size limit of 50MB.")
return False, "Video exceeds 50MB limit."
cap = cv2.VideoCapture(path)
fps = cap.get(cv2.CAP_PROP_FPS)
frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
duration = frames / fps if fps else 0
cap.release()
if duration > MAX_VIDEO_DURATION:
logger.warning("Video exceeds 30 seconds duration limit.")
return False, "Video exceeds 30 seconds duration limit."
logger.info("Video validation passed.")
return True, None
except Exception as e:
logger.error(f"Error validating video: {e}")
return False, str(e)
# Input Resolution
def resolve_input(mode, uploaded_img, uploaded_imgs, uploaded_vid, url):
"""
Resolves the input source based on user selection.
Supports single image, multiple images, video, or URL-based media.
Args:
mode (str): Input mode - 'Upload' or 'URL'.
uploaded_img (PIL.Image.Image): Single uploaded image.
uploaded_imgs (List[PIL.Image.Image]): List of uploaded images (batch).
uploaded_vid (str): Uploaded video file path.
url (str): URL pointing to media content.
Returns:
List[Union[PIL.Image.Image, str, None]]: A list of media items to process.
"""
logger.info(f"Resolving input based on mode: {mode}")
try:
if mode == "Upload":
# Prefer batch if provided
if uploaded_imgs and len(uploaded_imgs) > 0:
return uploaded_imgs
elif uploaded_img:
return [uploaded_img]
elif uploaded_vid:
return [uploaded_vid]
else:
logger.warning("No valid upload provided.")
return None
elif mode == "URL":
media_from_url = fetch_media_from_url(url)
if media_from_url:
return [media_from_url]
else:
logger.warning("Failed to fetch valid media from URL.")
return None
else:
logger.warning("Invalid input mode selected.")
return None
except Exception as e:
logger.error(f"Error resolving input: {e}")
return None
@timeout_decorator.timeout(35, use_signals=False) # 35 sec limit per image
def process_image(
image: Image.Image,
run_det: bool,
det_model: str,
det_confidence: float,
run_seg: bool,
seg_model: str,
run_depth: bool,
depth_model: str,
blend: float
):
"""
Runs selected perception tasks on the input image and packages results.
Args:
image (PIL.Image): Input image.
run_det (bool): Run object detection.
det_model (str): Detection model key.
det_confidence (float): Detection confidence threshold.
run_seg (bool): Run segmentation.
seg_model (str): Segmentation model key.
run_depth (bool): Run depth estimation.
depth_model (str): Depth model key.
blend (float): Overlay blend alpha (0.0 - 1.0).
Returns:
Tuple[Image, dict, Tuple[str, bytes]]: Final image, scene JSON, and downloadable ZIP.
"""
logger.info("Starting image processing pipeline.")
start_time = time.time()
outputs, scene = {}, {}
combined_np = np.array(image)
try:
# Detection
if run_det:
logger.info(f"Running detection with model: {det_model}")
load_start = time.time()
model = get_model("detection", DETECTION_MODEL_MAP[det_model], device="cpu")
logger.info(f"{det_model} detection model loaded in {time.time() - load_start:.2f} seconds.")
boxes = model.predict(image, conf_threshold=det_confidence)
overlay = model.draw(image, boxes)
combined_np = np.array(overlay)
buf = io.BytesIO()
overlay.save(buf, format="PNG")
outputs["detection.png"] = buf.getvalue()
scene["detection"] = boxes
# Segmentation
if run_seg:
logger.info(f"Running segmentation with model: {seg_model}")
load_start = time.time()
model = get_model("segmentation", SEGMENTATION_MODEL_MAP[seg_model], device="cpu")
logger.info(f"{seg_model} segmentation model loaded in {time.time() - load_start:.2f} seconds.")
mask = model.predict(image)
overlay = model.draw(image, mask, alpha=blend)
combined_np = cv2.addWeighted(combined_np, 1 - blend, np.array(overlay), blend, 0)
buf = io.BytesIO()
overlay.save(buf, format="PNG")
outputs["segmentation.png"] = buf.getvalue()
scene["segmentation"] = mask.tolist()
# Depth Estimation
if run_depth:
logger.info(f"Running depth estimation with model: {depth_model}")
load_start = time.time()
model = get_model("depth", DEPTH_MODEL_MAP[depth_model], device="cpu")
logger.info(f"{depth_model} depth model loaded in {time.time() - load_start:.2f} seconds.")
dmap = model.predict(image)
norm_dmap = ((dmap - dmap.min()) / (dmap.ptp()) * 255).astype(np.uint8)
d_pil = Image.fromarray(norm_dmap)
combined_np = cv2.addWeighted(combined_np, 1 - blend, np.array(d_pil.convert("RGB")), blend, 0)
buf = io.BytesIO()
d_pil.save(buf, format="PNG")
outputs["depth_map.png"] = buf.getvalue()
scene["depth"] = dmap.tolist()
# Final image overlay
final_img = Image.fromarray(combined_np)
buf = io.BytesIO()
final_img.save(buf, format="PNG")
outputs["scene_blueprint.png"] = buf.getvalue()
# Scene description
try:
scene_json = describe_scene(**scene)
except Exception as e:
logger.warning(f"describe_scene failed: {e}")
scene_json = {"error": str(e)}
telemetry = {
"session_id": generate_session_id(),
"runtime_sec": round(log_runtime(start_time), 2),
"used_models": {
"detection": det_model if run_det else None,
"segmentation": seg_model if run_seg else None,
"depth": depth_model if run_depth else None
}
}
scene_json["telemetry"] = telemetry
outputs["scene_description.json"] = json.dumps(scene_json, indent=2).encode("utf-8")
# ZIP file creation
zip_buf = io.BytesIO()
with zipfile.ZipFile(zip_buf, "w") as zipf:
for name, data in outputs.items():
zipf.writestr(name, data)
elapsed = log_runtime(start_time)
logger.info(f"Image processing completed in {elapsed:.2f} seconds.")
return final_img, scene_json, ("uvis_results.zip", zip_buf.getvalue())
except Exception as e:
logger.error(f"Error in processing pipeline: {e}")
return None, {"error": str(e)}, None
# Main Handler
def handle(mode, img, imgs, vid, url, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend):
"""
Master handler for resolving input and processing.
Returns outputs for Gradio interface.
"""
session_id = generate_session_id()
logger.info(f"Session ID: {session_id} | Handler activated with mode: {mode}")
start_time = time.time()
media = resolve_input(mode, img, imgs, vid, url)
if not media:
return None, format_error("No valid input provided. Please check your upload or URL."), None
results = []
for single_media in media:
if isinstance(single_media, str): # Video file
valid, err = validate_video(single_media)
if not valid:
return None, format_error(err), None
cap = cv2.VideoCapture(single_media)
ret, frame = cap.read()
cap.release()
if not ret:
return None, format_error("Failed to read video frame."), None
single_media = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if isinstance(single_media, Image.Image):
valid, err = validate_image(single_media)
if not valid:
return None, format_error(err), None
try:
return process_image(single_media, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend)
except timeout_decorator.timeout_decorator.TimeoutError:
logger.error("Image processing timed out.")
return None, format_error("Processing timed out. Try a smaller image or simpler model."), None
logger.warning("Unsupported media type resolved.")
log_runtime(start_time)
return None, format_error("Invalid input. Please check your upload or URL."), None
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Unified Visual Intelligence System (UVIS)")
# Input Mode Selection
mode = gr.Radio(["Upload", "URL"], value="Upload", label="Input Mode")
img = gr.Image(type="pil", label="Upload Image")
imgs = gr.Gallery(label="Upload Multiple Images (Up to 5)")
vid = gr.Video(label="Upload Video (<= 30s)")
url = gr.Textbox(label="URL (Image/Video)")
# Task Selection with parameters
with gr.Accordion("Object Detection Settings", open=False):
run_det = gr.Checkbox(label="Enable Object Detection")
det_model = gr.Dropdown(list(DETECTION_MODEL_MAP), label="Detection Model", visible=False)
det_confidence = gr.Slider(0.1, 1.0, 0.5, label="Detection Confidence Threshold", visible=False)
with gr.Accordion("Semantic Segmentation Settings", open=False):
run_seg = gr.Checkbox(label="Enable Segmentation")
seg_model = gr.Dropdown(list(SEGMENTATION_MODEL_MAP), label="Segmentation Model", visible=False)
with gr.Accordion("Depth Estimation Settings", open=False):
run_depth = gr.Checkbox(label="Enable Depth Estimation")
depth_model = gr.Dropdown(list(DEPTH_MODEL_MAP), label="Depth Model", visible=False)
blend = gr.Slider(0.0, 1.0, 0.5, label="Overlay Blend")
# Run Button
run = gr.Button("Run Analysis")
# Output Tabs
with gr.Tab("Scene JSON"):
json_out = gr.JSON()
with gr.Tab("Scene Blueprint"):
img_out = gr.Image()
with gr.Tab("Download"):
zip_out = gr.File()
# Attach Visibility Logic
run_det.change(toggle_visibility, run_det, [det_model, det_confidence])
run_seg.change(toggle_visibility, run_seg, [seg_model])
run_depth.change(toggle_visibility, run_depth, [depth_model])
# Button Click Event
run.click(
handle,
inputs=[mode, img, imgs, vid, url, run_det, det_model, det_confidence, run_seg, seg_model, run_depth, depth_model, blend],
outputs=[img_out, json_out, zip_out]
)
# Footer Section
gr.Markdown("---")
gr.Markdown(
"""
<div style='text-align: center; font-size: 14px;'>
Built by <b>Durga Deepak Valluri</b><br>
<a href="https://github.com/DurgaDeepakValluri/UVIS" target="_blank">GitHub</a> |
<a href="https://deecoded.io" target="_blank">Website</a> |
<a href="https://www.linkedin.com/in/durga-deepak-valluri" target="_blank">LinkedIn</a>
</div>
""",
)
# Launch the Gradio App
demo.launch()
|