Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,450 Bytes
c5eda13 d61f1b2 c5eda13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import numpy as np
import logging
from PIL import Image
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def describe_scene(detection=None, segmentation=None, depth=None):
"""
Generates a structured scene summary with metrics for detection, segmentation, and depth.
Args:
detection (list): List of detected objects with class names and bounding boxes.
segmentation (numpy.ndarray): Segmentation mask as a 2D numpy array.
depth (numpy.ndarray): Depth map as a 2D numpy array.
Returns:
dict: Structured scene description with metrics.
"""
logger.info("Generating scene summary...")
description = {"scene_summary": {}}
# Detection Summary with Metrics
if detection:
logger.info("Adding detection results to scene summary.")
description["scene_summary"]["objects"] = detection
confidences = [obj.get("confidence", 0) for obj in detection]
description["scene_summary"]["detection_metrics"] = {
"objects_detected": len(detection),
"average_confidence": float(np.mean(confidences)) if confidences else 0.0
}
# Segmentation Summary with Coverage Metrics
if segmentation is not None:
logger.info("Summarizing segmentation coverage.")
unique, counts = np.unique(segmentation, return_counts=True)
total = segmentation.size
coverage = [
{"class_id": int(class_id), "coverage": f"{(count / total) * 100:.2f}%"}
for class_id, count in zip(unique, counts)
]
dominant_class = max(coverage, key=lambda x: float(x["coverage"].strip('%')))
description["scene_summary"]["segmentation_summary"] = coverage
description["scene_summary"]["dominant_class"] = dominant_class
# Depth Summary with Metrics
if depth is not None:
logger.info("Summarizing depth information.")
mean_depth = float(np.mean(depth))
min_depth = float(np.min(depth))
max_depth = float(np.max(depth))
std_depth = float(np.std(depth))
description["scene_summary"]["depth_summary"] = {
"mean_depth": mean_depth,
"min_depth": min_depth,
"max_depth": max_depth,
"std_depth": std_depth
}
logger.info("Scene summary generation complete.")
return description
|