Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,162 +1,76 @@
|
|
1 |
import gradio as gr
|
2 |
from llama_cpp import Llama
|
3 |
-
from huggingface_hub import hf_hub_download
|
4 |
import os
|
5 |
-
import sys
|
6 |
-
import time
|
7 |
-
import requests
|
8 |
-
from tqdm import tqdm # For progress bars
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
total_length = int(r.headers.get("content-length"))
|
22 |
-
with open(local_filename, "wb") as f:
|
23 |
-
with tqdm(total=total_length, unit="B", unit_scale=True, desc=local_filename) as pbar:
|
24 |
-
for chunk in r.iter_content(chunk_size=8192):
|
25 |
-
if chunk:
|
26 |
-
f.write(chunk)
|
27 |
-
pbar.update(len(chunk))
|
28 |
-
return True
|
29 |
-
except Exception as e:
|
30 |
-
print(f"Error downloading {url}: {e}")
|
31 |
-
return False
|
32 |
-
|
33 |
-
def find_quantized_model_url(repo_url, quant_type="Q4_K_M"):
|
34 |
-
"""
|
35 |
-
Finds the URL of a specific quantized GGUF model file within a Hugging Face repository.
|
36 |
-
"""
|
37 |
-
try:
|
38 |
-
repo_id = repo_url.replace("https://huggingface.co/", "")
|
39 |
-
files = api.list_repo_files(repo_id=repo_id, repo_type="model")
|
40 |
-
for file_info in files:
|
41 |
-
if file_info.name.endswith(".gguf") and quant_type.lower() in file_info.name.lower():
|
42 |
-
model_url = f"https://huggingface.co/{repo_id}/resolve/main/{file_info.name}"
|
43 |
-
print(f"Found quantized model URL: {model_url}")
|
44 |
-
return model_url
|
45 |
-
print(f"Quantized model with type {quant_type} not found in repository {repo_url}")
|
46 |
-
return None
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Error finding quantized model: {e}")
|
49 |
-
return None
|
50 |
-
|
51 |
-
def load_model(repo_url=None, quant_type="Q4_K_M"):
|
52 |
-
"""Loads the Llama model, downloading the specified quantized version from a repository."""
|
53 |
-
global llm
|
54 |
-
global MODEL_PATH
|
55 |
-
try:
|
56 |
-
if repo_url:
|
57 |
-
model_url = find_quantized_model_url(repo_url, quant_type)
|
58 |
-
if model_url is None:
|
59 |
-
return f"Quantized model ({quant_type}) not found in the repository."
|
60 |
-
print(f"Downloading model from {model_url}...")
|
61 |
-
downloaded_model_name = os.path.basename(model_url)
|
62 |
-
download_success = download_file(model_url, downloaded_model_name)
|
63 |
-
if not download_success:
|
64 |
-
return "Model download failed."
|
65 |
-
model_path = downloaded_model_name
|
66 |
-
else:
|
67 |
-
model_path = MODEL_PATH + MODEL_FILENAME
|
68 |
-
|
69 |
-
if not os.path.exists(model_path):
|
70 |
-
if not repo_url: # only try to download if a repo_url was not provided
|
71 |
-
hf_hub_download(
|
72 |
-
repo_id=MODEL_REPO,
|
73 |
-
filename=MODEL_FILENAME,
|
74 |
-
repo_type="model",
|
75 |
-
local_dir=".",
|
76 |
-
)
|
77 |
-
if not os.path.exists(model_path): # check again after attempting download
|
78 |
-
return f"Model file not found at {model_path}."
|
79 |
-
|
80 |
-
print(f"Loading model from {model_path}...")
|
81 |
-
llm = Llama(
|
82 |
-
model_path=model_path,
|
83 |
-
n_ctx=4096,
|
84 |
-
n_threads=2,
|
85 |
-
n_threads_batch=2,
|
86 |
-
verbose=False,
|
87 |
)
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
def generate_response(message, history, system_prompt=DEFAULT_SYSTEM_PROMPT, temperature=0.7, top_p=0.9):
|
97 |
-
"""Generates a response from the Llama model."""
|
98 |
if llm is None:
|
99 |
-
yield "Model failed to load.
|
100 |
return
|
|
|
101 |
messages = [{"role": "system", "content": system_prompt}]
|
102 |
for human, assistant in history:
|
103 |
messages.append({"role": "user", "content": human})
|
104 |
messages.append({"role": "assistant", "content": assistant})
|
105 |
messages.append({"role": "user", "content": message})
|
|
|
106 |
prompt = "".join([f"{m['role'].capitalize()}: {m['content']}\n" for m in messages])
|
|
|
107 |
try:
|
108 |
-
|
109 |
prompt,
|
110 |
max_tokens=1024,
|
111 |
echo=False,
|
112 |
temperature=temperature,
|
113 |
top_p=top_p,
|
114 |
-
stream=True,
|
115 |
-
)
|
116 |
-
|
|
|
|
|
117 |
yield text
|
|
|
118 |
except Exception as e:
|
119 |
-
|
120 |
-
print(error_message)
|
121 |
-
yield error_message
|
122 |
|
123 |
def chat(message, history, system_prompt, temperature, top_p):
|
124 |
-
"""Wrapper function for the chat interface."""
|
125 |
return generate_response(message, history, system_prompt, temperature, top_p)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
gr.
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
label="Quantization Type",
|
139 |
-
choices=["Q4_K_M", "Q6", "Q4_K_S"],
|
140 |
-
value="Q4_K_M",
|
141 |
-
)
|
142 |
-
load_button = gr.Button("Load Model")
|
143 |
-
chat_interface = gr.ChatInterface(
|
144 |
-
fn=chat,
|
145 |
-
description="Test a GGUF model. Chats aren't persistent.",
|
146 |
-
additional_inputs=[
|
147 |
-
gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=3),
|
148 |
-
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.8, step=0.1),
|
149 |
-
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.9, step=0.1),
|
150 |
-
],
|
151 |
-
cache_examples=False,
|
152 |
-
)
|
153 |
-
load_button.click(
|
154 |
-
load_model_and_launch,
|
155 |
-
inputs=[repo_url_input, quant_type_input],
|
156 |
-
outputs=status_label,
|
157 |
-
)
|
158 |
-
|
159 |
-
iface.launch()
|
160 |
|
161 |
-
|
162 |
-
main()
|
|
|
1 |
import gradio as gr
|
2 |
from llama_cpp import Llama
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
import os
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
MODEL_REPO = "DreadPoor/Irix_1.1-12B-Model_Stock-Q4_K_M-GGUF"
|
7 |
+
MODEL_FILENAME = "irix_1.1-12b-model_stock-q4_k_m.gguf"
|
8 |
+
MODEL_PATH = "./" + MODEL_FILENAME
|
9 |
|
10 |
+
try:
|
11 |
+
if not os.path.exists(MODEL_PATH):
|
12 |
+
hf_hub_download(
|
13 |
+
repo_id=MODEL_REPO,
|
14 |
+
filename=MODEL_FILENAME,
|
15 |
+
repo_type="model",
|
16 |
+
local_dir=".",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
+
llm = Llama(
|
19 |
+
model_path=MODEL_PATH,
|
20 |
+
n_ctx=4096,
|
21 |
+
n_threads=2,
|
22 |
+
n_threads_batch=2,
|
23 |
+
verbose=False,
|
24 |
+
)
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error loading model: {e}")
|
27 |
+
llm = None
|
28 |
+
|
29 |
+
DEFAULT_SYSTEM_PROMPT = "You are Doll, a smart and capable AI; A silly, obliging and affable slave, dedicated to serving and caring for your master."
|
30 |
|
31 |
def generate_response(message, history, system_prompt=DEFAULT_SYSTEM_PROMPT, temperature=0.7, top_p=0.9):
|
|
|
32 |
if llm is None:
|
33 |
+
yield "Model failed to load."
|
34 |
return
|
35 |
+
|
36 |
messages = [{"role": "system", "content": system_prompt}]
|
37 |
for human, assistant in history:
|
38 |
messages.append({"role": "user", "content": human})
|
39 |
messages.append({"role": "assistant", "content": assistant})
|
40 |
messages.append({"role": "user", "content": message})
|
41 |
+
|
42 |
prompt = "".join([f"{m['role'].capitalize()}: {m['content']}\n" for m in messages])
|
43 |
+
|
44 |
try:
|
45 |
+
stream = llm(
|
46 |
prompt,
|
47 |
max_tokens=1024,
|
48 |
echo=False,
|
49 |
temperature=temperature,
|
50 |
top_p=top_p,
|
51 |
+
stream=True, # Enable streaming
|
52 |
+
)
|
53 |
+
|
54 |
+
for output in stream:
|
55 |
+
text = output["choices"][0]["text"]
|
56 |
yield text
|
57 |
+
|
58 |
except Exception as e:
|
59 |
+
yield f"Error during inference: {e}"
|
|
|
|
|
60 |
|
61 |
def chat(message, history, system_prompt, temperature, top_p):
|
|
|
62 |
return generate_response(message, history, system_prompt, temperature, top_p)
|
63 |
|
64 |
+
iface = gr.ChatInterface(
|
65 |
+
fn=chat,
|
66 |
+
title="llama.cpp Chat",
|
67 |
+
description="Test a GGUF model. Chats arent persistent",
|
68 |
+
additional_inputs=[
|
69 |
+
gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=3),
|
70 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.8, step=0.1),
|
71 |
+
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.9, step=0.1),
|
72 |
+
],
|
73 |
+
cache_examples=False,
|
74 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
iface.launch()
|
|