File size: 6,404 Bytes
2f0a0f2
ee85cfc
370ab1e
ee85cfc
370ab1e
 
 
 
ee85cfc
3605ca4
 
 
370ab1e
3605ca4
 
 
370ab1e
 
 
3605ca4
370ab1e
 
 
 
3605ca4
370ab1e
 
3605ca4
370ab1e
3605ca4
 
27be339
3605ca4
370ab1e
3605ca4
370ab1e
 
 
 
 
3605ca4
 
 
 
 
 
370ab1e
3605ca4
370ab1e
 
3605ca4
 
370ab1e
3605ca4
370ab1e
 
3605ca4
370ab1e
3605ca4
370ab1e
 
 
 
 
3605ca4
370ab1e
 
 
 
3605ca4
 
 
 
 
 
 
 
 
370ab1e
 
 
 
 
 
 
 
ba57f6d
370ab1e
 
 
 
 
 
 
e1d5f80
3605ca4
370ab1e
ba57f6d
370ab1e
 
c6d1330
0228ec9
 
 
c6d1330
 
ba57f6d
370ab1e
ba57f6d
 
 
 
 
370ab1e
 
 
 
ba57f6d
370ab1e
 
 
 
3605ca4
370ab1e
ba57f6d
c6d1330
370ab1e
 
3605ca4
370ab1e
 
 
 
 
3605ca4
370ab1e
 
 
3605ca4
 
370ab1e
3605ca4
370ab1e
 
 
 
 
 
 
 
 
 
3605ca4
370ab1e
3605ca4
 
370ab1e
 
 
 
 
3605ca4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download, HfApi
import os
import sys
import time
import requests
from tqdm import tqdm  # For progress bars

MODEL_PATH = "./"
llm = None
api = HfApi()

DEFAULT_SYSTEM_PROMPT = "You are Doll, a smart and capable AI; A silly, obliging and affable slave, dedicated to serving and caring for your master."

def download_file(url, local_filename):
    """Downloads a file from a URL with a progress bar."""
    try:
        with requests.get(url, stream=True) as r:
            r.raise_for_status()
            total_length = int(r.headers.get("content-length"))
            with open(local_filename, "wb") as f:
                with tqdm(total=total_length, unit="B", unit_scale=True, desc=local_filename) as pbar:
                    for chunk in r.iter_content(chunk_size=8192):
                        if chunk:
                            f.write(chunk)
                            pbar.update(len(chunk))
        return True
    except Exception as e:
        print(f"Error downloading {url}: {e}")
        return False

def find_quantized_model_url(repo_url, quant_type="Q4_K_M"):
    """
    Finds the URL of a specific quantized GGUF model file within a Hugging Face repository.
    """
    try:
        repo_id = repo_url.replace("https://huggingface.co/", "")
        files = api.list_repo_files(repo_id=repo_id, repo_type="model")
        for file_info in files:
            if file_info.name.endswith(".gguf") and quant_type.lower() in file_info.name.lower():
                model_url = f"https://huggingface.co/{repo_id}/resolve/main/{file_info.name}"
                print(f"Found quantized model URL: {model_url}")
                return model_url
        print(f"Quantized model with type {quant_type} not found in repository {repo_url}")
        return None
    except Exception as e:
        print(f"Error finding quantized model: {e}")
        return None

def load_model(repo_url=None, quant_type="Q4_K_M"):
    """Loads the Llama model, downloading the specified quantized version from a repository."""
    global llm
    global MODEL_PATH
    try:
        if repo_url:
            model_url = find_quantized_model_url(repo_url, quant_type)
            if model_url is None:
                return f"Quantized model ({quant_type}) not found in the repository."
            print(f"Downloading model from {model_url}...")
            downloaded_model_name = os.path.basename(model_url)
            download_success = download_file(model_url, downloaded_model_name)
            if not download_success:
                return "Model download failed."
            model_path = downloaded_model_name
        else:
            model_path = MODEL_PATH + MODEL_FILENAME

        if not os.path.exists(model_path):
            if not repo_url: # only try to download if a repo_url was not provided
                hf_hub_download(
                    repo_id=MODEL_REPO,
                    filename=MODEL_FILENAME,
                    repo_type="model",
                    local_dir=".",
                )
            if not os.path.exists(model_path): # check again after attempting download
                return f"Model file not found at {model_path}."

        print(f"Loading model from {model_path}...")
        llm = Llama(
            model_path=model_path,
            n_ctx=4096,
            n_threads=2,
            n_threads_batch=2,
            verbose=False,
        )
        print("Model loaded successfully.")
        return "Model loaded successfully."
    except Exception as e:
        error_message = f"Error loading model: {e}"
        print(error_message)
        llm = None
        return error_message

def generate_response(message, history, system_prompt=DEFAULT_SYSTEM_PROMPT, temperature=0.7, top_p=0.9):
    """Generates a response from the Llama model."""
    if llm is None:
        yield "Model failed to load. Please check the console for error messages."
        return
    messages = [{"role": "system", "content": system_prompt}]
    for human, assistant in history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    messages.append({"role": "user", "content": message})
    prompt = "".join([f"{m['role'].capitalize()}: {m['content']}\n" for m in messages])
    try:
        for chunk in llm.create_completion(
            prompt,
            max_tokens=1024,
            echo=False,
            temperature=temperature,
            top_p=top_p,
            stream=True,
        ):
            text = chunk["choices"][0]["text"]
            yield text
    except Exception as e:
        error_message = f"Error during inference: {e}"
        print(error_message)
        yield error_message

def chat(message, history, system_prompt, temperature, top_p):
    """Wrapper function for the chat interface."""
    return generate_response(message, history, system_prompt, temperature, top_p)

def main():
    """Main function to load the model and launch the Gradio interface."""
    def load_model_and_launch(repo_url, quant_type):
        model_load_message = load_model(repo_url, quant_type)
        return model_load_message

    with gr.Blocks() as iface:
        gr.Markdown("## llama.cpp Chat")
        status_label = gr.Label(label="Model Loading Status")
        repo_url_input = gr.Textbox(label="Repository URL", placeholder="Enter repository URL")
        quant_type_input = gr.Dropdown(
            label="Quantization Type",
            choices=["Q4_K_M", "Q6", "Q4_K_S"],
            value="Q4_K_M",
        )
        load_button = gr.Button("Load Model")
        chat_interface = gr.ChatInterface(
            fn=chat,
            description="Test a GGUF model. Chats aren't persistent.",
            additional_inputs=[
                gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=3),
                gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.8, step=0.1),
                gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.9, step=0.1),
            ],
            cache_examples=False,
        )
        load_button.click(
            load_model_and_launch,
            inputs=[repo_url_input, quant_type_input],
            outputs=status_label,
        )

    iface.launch()

if __name__ == "__main__":
    main()