Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -66,8 +66,7 @@ class LangChainAgentWrapper:
|
|
66 |
def __init__(self):
|
67 |
print("Initializing LangChainAgentWrapper...")
|
68 |
|
69 |
-
|
70 |
-
model_id = "google/gemma-2b-it"
|
71 |
|
72 |
try:
|
73 |
hf_auth_token = os.getenv("HF_TOKEN")
|
@@ -76,34 +75,48 @@ class LangChainAgentWrapper:
|
|
76 |
else:
|
77 |
print("HF_TOKEN secret found.")
|
78 |
|
79 |
-
# ---
|
80 |
-
|
81 |
-
#
|
82 |
print("Creating 4-bit quantization config...")
|
83 |
quantization_config = transformers.BitsAndBytesConfig(
|
84 |
load_in_4bit=True,
|
85 |
bnb_4bit_quant_type="nf4",
|
86 |
-
bnb_4bit_compute_dtype="bfloat16"
|
87 |
)
|
88 |
print("Quantization config created.")
|
89 |
-
# --- END NEW ---
|
90 |
|
91 |
-
#
|
92 |
-
print(f"Loading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
llm_pipeline = transformers.pipeline(
|
94 |
"text-generation",
|
95 |
-
model=
|
96 |
-
|
97 |
-
|
98 |
-
token=hf_auth_token,
|
99 |
-
quantization_config=quantization_config # <<< --- PASS THE NEW CONFIG HERE
|
100 |
)
|
101 |
-
print("Model pipeline
|
|
|
|
|
102 |
|
103 |
# Wrap the pipeline in a LangChain LLM object
|
104 |
self.llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
105 |
|
106 |
-
# Define the list of LangChain tools (this part is unchanged)
|
107 |
self.tools = [
|
108 |
Tool(
|
109 |
name="get_current_time_in_timezone",
|
@@ -119,7 +132,7 @@ class LangChainAgentWrapper:
|
|
119 |
]
|
120 |
print(f"Tools prepared for agent: {[tool.name for tool in self.tools]}")
|
121 |
|
122 |
-
# Create the ReAct agent prompt
|
123 |
react_prompt = PromptTemplate.from_template(
|
124 |
"""
|
125 |
You are a helpful assistant. Answer the following questions as best you can.
|
@@ -145,10 +158,8 @@ class LangChainAgentWrapper:
|
|
145 |
"""
|
146 |
)
|
147 |
|
148 |
-
# Create the agent (this part is unchanged)
|
149 |
agent = create_react_agent(self.llm, self.tools, react_prompt)
|
150 |
-
|
151 |
-
# Create the agent executor (this part is unchanged)
|
152 |
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
|
153 |
print("LangChain agent created successfully.")
|
154 |
|
|
|
66 |
def __init__(self):
|
67 |
print("Initializing LangChainAgentWrapper...")
|
68 |
|
69 |
+
model_id = "google/gemma-2b-it"
|
|
|
70 |
|
71 |
try:
|
72 |
hf_auth_token = os.getenv("HF_TOKEN")
|
|
|
75 |
else:
|
76 |
print("HF_TOKEN secret found.")
|
77 |
|
78 |
+
# --- CORRECTED MODEL LOADING ---
|
79 |
+
|
80 |
+
# 1. Create the 4-bit quantization configuration
|
81 |
print("Creating 4-bit quantization config...")
|
82 |
quantization_config = transformers.BitsAndBytesConfig(
|
83 |
load_in_4bit=True,
|
84 |
bnb_4bit_quant_type="nf4",
|
85 |
+
bnb_4bit_compute_dtype="bfloat16"
|
86 |
)
|
87 |
print("Quantization config created.")
|
|
|
88 |
|
89 |
+
# 2. Load the tokenizer
|
90 |
+
print(f"Loading tokenizer for: {model_id}")
|
91 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, token=hf_auth_token)
|
92 |
+
print("Tokenizer loaded successfully.")
|
93 |
+
|
94 |
+
# 3. Load the model with the quantization config
|
95 |
+
print(f"Loading model '{model_id}' with quantization...")
|
96 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
97 |
+
model_id,
|
98 |
+
quantization_config=quantization_config,
|
99 |
+
device_map="auto", # Automatically maps model to available hardware (CPU/GPU)
|
100 |
+
token=hf_auth_token
|
101 |
+
)
|
102 |
+
print("Model loaded successfully.")
|
103 |
+
|
104 |
+
# 4. Create the Hugging Face pipeline with the pre-loaded model and tokenizer
|
105 |
+
print("Creating text-generation pipeline...")
|
106 |
llm_pipeline = transformers.pipeline(
|
107 |
"text-generation",
|
108 |
+
model=model,
|
109 |
+
tokenizer=tokenizer,
|
110 |
+
# No need to pass quantization_config here anymore
|
|
|
|
|
111 |
)
|
112 |
+
print("Model pipeline created successfully.")
|
113 |
+
|
114 |
+
# --- END CORRECTION ---
|
115 |
|
116 |
# Wrap the pipeline in a LangChain LLM object
|
117 |
self.llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
118 |
|
119 |
+
# Define the list of LangChain tools (this part is unchanged and correct)
|
120 |
self.tools = [
|
121 |
Tool(
|
122 |
name="get_current_time_in_timezone",
|
|
|
132 |
]
|
133 |
print(f"Tools prepared for agent: {[tool.name for tool in self.tools]}")
|
134 |
|
135 |
+
# Create the ReAct agent prompt (this part is unchanged and correct)
|
136 |
react_prompt = PromptTemplate.from_template(
|
137 |
"""
|
138 |
You are a helpful assistant. Answer the following questions as best you can.
|
|
|
158 |
"""
|
159 |
)
|
160 |
|
161 |
+
# Create the agent and executor (this part is unchanged and correct)
|
162 |
agent = create_react_agent(self.llm, self.tools, react_prompt)
|
|
|
|
|
163 |
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
|
164 |
print("LangChain agent created successfully.")
|
165 |
|