File size: 21,725 Bytes
7eded29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
"""A Streamlit app designed to help with data labeling with explainable
machine learning approach. It can handle data with many labels and many
classes. For each label, an Explainable Boosting Machine model is
trained on the labeled data, then it makes class predictions and
provides per-instance local explanations, which are then used to make
heatmaps, displayed in the main screen.
Model page: https://huggingface.co/Donlapark/XLabel
"""
import json
import math
import os
import pickle as pkle

from interpret.glassbox.ebm.ebm import ExplainableBoostingClassifier

import numpy as np
import pandas as pd

import altair as alt
import streamlit as st
from streamlit import session_state as _state
import streamlit.components.v1 as components

_PERSIST_STATE_KEY = f"{__name__}_PERSIST"
_CONFIGS_FILE = "configs.json"
_MODEL = "_saved_models.pickle"
_NUM_FEAT_PER_ROW = 11

st.set_page_config(layout="wide")


def main():
    """The main Streamlit app."""
    if "configs" not in _state:
        try:
            with open(_CONFIGS_FILE, "r") as _file:
                _state["configs"] = json.load(_file)
        except FileNotFoundError:
            create_config_file()

        _state["loaded_new_file"] = True

    st.sidebar.write("Current database: " + _state.configs["db_filename"])

    st.sidebar.file_uploader("Upload a CSV or Excel file",
                             type=["csv", "xlsx", "xls"],
                             key="uploaded_files",
                             accept_multiple_files=False,
                             on_change=update_file)

    with st.sidebar.form("sidebar"):
        st.slider("Number of labels",
                  min_value=1,
                  max_value=20,
                  value=_state.configs["sidebar"]["num_labels"],
                  step=1,
                  key="num_labels")

        st.selectbox("Include data with label/prediction mismatches?",
                     ("Yes", "No"),
                     key="relabel",
                     index=("Yes",
                            "No").index(_state.configs["sidebar"]["relabel"]))

        st.selectbox("Sampling mode",
                     ("Fixed sample size", "Confidence threshold"),
                     key="mode",
                     index=("Fixed sample size", "Confidence threshold").index(
                         _state.configs["sidebar"]["mode"]))

        st.slider("Sample size (for \"Fixed sample size\" mode)",
                  min_value=1,
                  max_value=500,
                  value=_state.configs["sidebar"]["n_samples"],
                  step=1,
                  key="n_samples")

        st.slider("Threshold (for \"Confidence threshold\" mode)",
                  min_value=0.00,
                  max_value=1.00,
                  value=_state.configs["sidebar"]["threshold"],
                  step=0.01,
                  format="%.2f",
                  key="threshold")

        form_cols = st.columns((2, 2, 2))
        form_cols[1].form_submit_button("Sample", on_click=sample_and_predict)

    if "pages" in _state:
        page_list = list(_state.pages)
        tabs = st.tabs(page_list)
        for i, tab in enumerate(tabs):
            with tab:
                display_main_screen(page_list[i])

    filename = _state.configs["db_filename"]
    file_pre, file_ext = os.path.splitext(filename)
    if "database" in _state:
        data, mime = convert_to_downloadable(_state.database, file_ext)

        st.sidebar.download_button(label="Download labeled data",
                                   data=data,
                                   file_name=filename,
                                   mime=mime)


def update_file():
    """Update the state parameters after a file has been uploaded"""
    if _state.uploaded_files is not None:
        _state.configs["db_filename"] = _state.uploaded_files.name
        _state.loaded_new_file = True


def init_state_params():
    """Initialize all state parameters.

    This function will be called by sample_and_predict() when
    _state.pages has not been initialized.

    State parameters:
        database: The pandas dataframe of the database.
        configs: The saved configs of sidebar widgets.
        pages: The list of all labels.
        classes: The dict of all classes for each label.
        class_to_num: The encoding dict of classes into integers.
        num_to_class: The decoding dict of integers into classes.
        class_to_num: The dict that maps each class to the
          corresponding number.
        previous_: The index of the previous page.
        next_: The index of the next page.
        next_clicked: The index of the current page.
        local_results: A dict of outputs of EBM
          used to write predictions and plot heatmaps on screen.
        models: A dict of EBM models to predict the labels.
        models_params: A dict of models' attributes, which will be
          saved as a pickle file.
        predictions: A pandas dataframe; each column contains EBM's
          predictions of each label.
        unlabeled_index: A pandas index of unlabeled rows. When new
          labels are added to the database, compute_unlabeled_index()
          needs to be called to track the changes.
    """
    if _state.uploaded_files is not None:
        data_file = _state.uploaded_files
        _state.configs["db_filename"] = data_file.name
    else:
        data_file = _state.configs["db_filename"]

    filename = _state.configs["db_filename"]
    if filename == "None":
        return

    file_pre, file_ext = os.path.splitext(filename)
    if file_ext == ".csv":
        _state.database = pd.read_csv(data_file, index_col=0)
    elif (file_ext == ".xlsx") or (file_ext == ".xls"):
        _state.database = pd.read_excel(data_file, index_col=0)

    create_pages()


def create_pages():
    """Add or change state parameters that are related to labeling pages

    These parameters assign the labels to multiple pages, with
    one label per page.
    """
    _state["pages"] = _state.database.columns[-_state.num_labels:]
    _state["classes"] = {
        label: sorted(list(_state.database[label].dropna().unique()))
        for label in _state.pages
    }
    _state["num_to_class"] = {
        label: dict(enumerate(_state.classes[label]))
        for label in _state.pages
    }
    _state["class_to_num"] = {
        label: {c: i
                for i, c in enumerate(_state.classes[label])}
        for label in _state.pages
    }

    _state.update({
        'local_results': {}
    })

    _state["predictions"] = pd.DataFrame(index=_state.database.index,
                                         columns=_state.pages)

    file_pre, file_ext = os.path.splitext(_state.configs["db_filename"])
    try:
        with open(file_pre + str(_state.num_labels) + _MODEL, 'rb') as _file:
            _state["models_params"] = pkle.load(_file)
            _state["models"] = {}
            for label in _state.pages:
                _state.models[label] = ExplainableBoostingClassifier()
                _state.models[label].__dict__.update(
                    _state.models_params[label])
    except FileNotFoundError:
        _state["models"], _state["models_params"] = initialize_models()

    compute_unlabeled_index()


def initialize_models():
    """initialize and train EBMs for all labels.

    If a pickle file of EBM models (stored in _MODEL) is not found
    in the directory, this function will be called by init_state_params()
    to initialize the models.
    """
    models = {}
    models_params = {}
    for label in _state.pages:
        y = _state.database[label].dropna().map(_state.class_to_num[label])
        X = subset_features(_state.database, label)
        X = X.loc[y.index, :]
        models[label] = ExplainableBoostingClassifier().fit(X, y)
        models_params[label] = models[label].__dict__

    return models, models_params


def subset_features(X, label):
    """Returns a subset of features specified in state's input_features parameters
    Args:
        X: a Pandas DataFrame.
        label: The column name of the labels.

    Returns
        A Pandas DataFrame consisting of a subset of features in X.
    """
    input_features = _state.configs["input_features"]
    if label not in input_features.keys():
        X = X.iloc[:, :-_state.num_labels]
    else:
        X = X.loc[:, input_features[label]]
    return X


def compute_unlabeled_index(new_labeled_index=None, label=None):
    """Track the indices of unlabeled data after introducing new labels.

    Args:
        new_labeled_index: A pandas index of newly labeled data.
        label: The column name of the new labels.
    """
    if new_labeled_index is not None:
        _state.unlabeled_index[label] = _state.unlabeled_index[
            label].difference(new_labeled_index)
    else:
        all_index = _state.database.index
        _state.unlabeled_index = {
            label: all_index[_state.database[label].isna()]
            for label in _state.pages
        }


def create_config_file():
    """Create a new config file"""
    _state["configs"] = {
        "db_filename": "None",
        "sidebar": {
            "num_labels": 1,
            "relabel": "Yes",
            "mode": "Fixed sample size",
            "n_samples": 50,
            "threshold": 0.95
        },
        "input_features": {}
    }
    with open(_CONFIGS_FILE, "w") as _file:
        json.dump(_state.configs, _file, indent=4)


@st.experimental_memo
def convert_to_downloadable(data, file_type):
    """Convert a dataframe to a downloadable format

    Args:
    data: A Pandas DataFrame.
    file_type: A target format for the conversion: ".csv", ".xls" or ".xlsx".

    Returns:
    converted_data: Data converted to the specified format.
    """
    if file_type == ".csv":
        converted_data = data.to_csv().encode('utf-8')
        mime = "text/csv"
    elif (file_type == ".xlsx") or (file_type == ".xls"):
        converted_data = data.to_excel().encode('utf-8')
        mime = "application/vnd.ms-excel"
    else:
        raise ValueError("file_type must be \"csv\" or \"excel\"")

    return converted_data, mime


def display_main_screen(label):
    """Display predictions and heatmaps on the main screen.

    This function is called after EBM has been trained on the labeled data.
    The predictions and explanations (displayed as heatmaps) will be shown
    on the main screen.

    Args:
        label: the column name of the predictions.
    """
    main_cols = st.columns((4, 4, 4))
    if _state.unlabeled_index[label].empty:
        main_cols[1].write("All " + label + " data are labeled.")
    else:
        with st.form(label + "Label form"):
            if _state.local_results[label] == {}:
                main_cols[1].write("""There are some unlabeled data left.  \n \
                This means that the confidences of the remaining data are \
                above the threshold. \n You can either let the model label \
                these data automatically \n or change the sampling mode to \
                \"Fixed sample size\".""")
            else:
                input_features = _state.configs["input_features"]
                if label not in input_features.keys():
                    num_features = _state.database.shape[1] - _state.num_labels
                else:
                    num_features = len(input_features[label])
                num_heatmap_rows = math.ceil(num_features / _NUM_FEAT_PER_ROW)
                for page in _state.local_results[label]:
                    current_plot = plot_all_features(
                        _state.local_results[label][page]['data'],
                        title=str(page),
                        height=50,
                        num_rows=num_heatmap_rows)
                    cols = st.columns((6, 1))
                    #with cols[0]:
                    #    if _state.text1 is not None:
                    #        st.write(_state.data[_state.text1][page])
                    #    if _state.text2 is not None:
                    #        st.write(_state.data[_state.text2][page])

                    cols[0].altair_chart(current_plot,
                                         use_container_width=True)

                    prediction = _state.local_results[label][page][
                        'prediction']
                    cols[1].radio("Label",
                                  options=_state.classes[label],
                                  key=label + str(page),
                                  index=int(prediction))
                    results = report_results(page, label)
                    for result in results:
                        cols[1].write(result)
                    st.markdown("""---""")

            label_from_cols = st.columns((4, 4, 4))

            label_from_cols[1].radio("Automatically label the remaining data?",
                                     ("Yes", "No"),
                                     index=1,
                                     key=label+"_auto")

            label_from_cols[1].form_submit_button("Submit Labels",
                                                  on_click=update_and_save,
                                                  args=(label, ))


@st.experimental_memo
def plot_all_features(data, title, height, num_rows):
    """Plot all rows of the heatmap of EBM's per-instance explanation.

    Args:
        data: Per-instance local explanations from EBM.
        title: The plot's title.
        height: The height of the plot.
        num_rows: The number of rows of the heatmap.

    Returns:
        obj: An Altair plot object.
    """
    plot_list = [None] * num_rows
    if num_rows == 1:
        plot_list[0] = plot(data, title, height)
    else:
        plot_list[0] = plot(data.iloc[0:_NUM_FEAT_PER_ROW], title, height)
        for i in range(1, num_rows - 1):
            plot_list[i] = plot(
                data.iloc[_NUM_FEAT_PER_ROW * i:_NUM_FEAT_PER_ROW * (i + 1)],
                "", height)
        plot_list[-1] = plot(data.iloc[_NUM_FEAT_PER_ROW * (num_rows - 1):],
                             "", height)

    obj = alt.vconcat(*plot_list).configure_axis(
        labelFontSize=13, titleFontSize=16, labelAngle=0,
        title=None).configure_title(fontSize=16)

    return obj


def plot(data, title, height):
    """Plot each row of the heatmap of EBM's per-instance explanation.

    Args:
        data: Per-instance local explanations from EBM.
        title: The plot's title.
        height: The height of the plot.

    Returns:
        obj: An Altair plot object.
    """
    base = alt.Chart(data).encode(x=alt.X('features', sort=None))

    heatmap = base.mark_rect().encode(color=alt.Color(
        'scores:Q',
        scale=alt.Scale(scheme='redblue', reverse=True, domain=[0, 1]),
        legend=alt.Legend(direction='vertical')))

    # Configure text
    text = base.mark_text(baseline='middle', fontSize=14).encode(
        text='values:N',
        color=alt.condition(
            (alt.datum.scores > 0.8) | (alt.datum.scores < 0.2),
            alt.value('white'), alt.value('black')))

    obj = (heatmap + text).properties(height=height, width=550, title=title)

    return obj


@st.experimental_memo
def report_results(idx, col_name):
    """Create a list that contains current label (if exists) and confidence score.

    Args:
        idx: A row's index in the database.
        col_name: A column's name in the database.

    Returns:
        results: A list of current label (if exists) and confidence score.
    """
    results = []
    current_label = _state.database[col_name][idx]
    if not pd.isna(current_label):
        results.append(f"Current label: {current_label}")

    confidence = _state.local_results[col_name][idx]['confidence']
    results.append(f"Confidence: {confidence:.2f}")

    return results


def sample_and_predict():
    """Sample data and make a dict of predictions and explanations.

    This function calls EBM to predict the labels and give per-instance
    local explanations. This function calls generate_explanation() to store
    the predictions and explanations in a dictionary.
    """
    st.experimental_memo.clear()

    if _state.loaded_new_file:
        init_state_params()
        _state.loaded_new_file = False
    else:
        if "database" not in _state:
            st.error("No database has been uploaded.")
            return
        if _state.configs["sidebar"]["num_labels"] != _state.num_labels:
            create_pages()

    _state.local_results = dict.fromkeys(_state.pages)

    for label in _state.pages:
        X = subset_features(_state.database, label)
        if _state.relabel == "No":
            X_unlabeled = X.loc[_state.unlabeled_index[label], :]
        else:
            X_unlabeled = X
        _state.local_results[label] = {}

        model = _state.models[label]
        generate_explanation(X_unlabeled, label, model)

    for k in _state.configs["sidebar"].keys():
        _state.configs["sidebar"][k] = _state[k]
    with open(_CONFIGS_FILE, "w") as _file:
        json.dump(_state.configs, _file, indent=4)


def update_and_save(label):
    """Update the labels, then retrain and save the models.

    Store the user's labels in the database, which is then saved to
    a local disk. EBM is then retrained on the database with addition
    labels, after which, a new list of predictions and explanations
    will be shown on the main screen. This function calls
    generate_explanation() to store the predictions and explanations
    in a dictionary.

    Args:
        label: the column name of the label.
    """
    new_labeled_index = list(_state.local_results[label].keys())
    _state.database.loc[new_labeled_index, label] = [
        _state[label + str(ix)] for ix in new_labeled_index
    ]
    compute_unlabeled_index(new_labeled_index, label)

    if _state[label + "_auto"] == "Yes":
        unlabeled_idx = _state.unlabeled_index[label]
        class_pred = _state.predictions.loc[unlabeled_idx, label]
        _state.database.loc[unlabeled_idx, label] = class_pred
        _state.unlabeled_index[label] = pd.Index([])
        labeled_index = _state.database.index
    else:
        labeled_index = _state.database.index.difference(
            _state.unlabeled_index[label])

    X = subset_features(_state.database, label)
    X_train = X.loc[labeled_index, :]
    ytrain = _state.database.loc[labeled_index, label]
    ebm = ExplainableBoostingClassifier()
    ebm.fit(X_train, ytrain.map(_state.class_to_num[label]))
    _state.models[label] = ebm
    _state.models_params[label] = ebm.__dict__

    filename = _state.configs["db_filename"]
    file_pre, file_ext = os.path.splitext(filename)
    with open(file_pre + str(_state.num_labels) + _MODEL, 'wb') as _file:
        pkle.dump(_state.models_params, _file, protocol=pkle.HIGHEST_PROTOCOL)

    _state.local_results[label] = {}
    if _state[label + "_auto"] == "No":
        X = X.loc[_state.unlabeled_index[label], :]
        generate_explanation(X, label, ebm)


def generate_explanation(X, label, model):
    """Create a dict of predictions and explanations of a sample.

    Make label predictions and per-instance local explanations,
    which are then stored as a dict in _state.local_results.

    Args:
        X: A set of unlabeled data.
        label: The column name of a label.
        model: A model to predict labels and provide explanations.
    """
    n_samples = X.shape[0]
    n_features = X.shape[1]

    localx = model.explain_local(X)._internal_obj['specific']
    ypred = np.array([
        _state.num_to_class[label][localx[j]['perf']['predicted']]
        for j in range(n_samples)
    ])
    _state.predictions.loc[X.index, label] = ypred
    y = _state.database.loc[X.index, label]

    p = np.array(
        [localx[j]['perf']['predicted_score'] for j in range(n_samples)])
    scores = np.minimum(p, (pd.isnull(y) | (ypred == y)))

    if _state.mode == "Confidence threshold":
        top_ind = np.where(scores <= _state.threshold)[0]
    else:
        n_samples = np.minimum(_state.n_samples, scores.shape[0] - 1)
        top_ind = np.argpartition(scores, n_samples)[:n_samples]

    X_ = X.iloc[top_ind, :].copy()
    ypred = ypred[top_ind]

    id_idx_pair = dict(zip(X_.index, top_ind))

    try:
        data_by_class = [X_[ypred == c] for c in _state.classes[label]]
    except KeyError:
        return

    feature_names = X.columns

    for sgn_data in data_by_class:
        current_dict = _state.local_results[label]
        for j in sgn_data.index:
            localxi = localx[id_idx_pair[j]]

            if len(_state.classes[label]) == 2:
                feature_contrib = localxi['scores'][:n_features]
            else:
                feature_contrib = [
                    localxi['scores'][k][localxi['perf']['predicted']]
                    for k in range(n_features)
                ]
            heatmap_data = pd.DataFrame({
                'features':
                feature_names,
                'values':
                localxi['values'][:n_features],
                'scores':
                1 / (1 + 1 / np.exp(feature_contrib))
            })
            heatmap_data = heatmap_data.astype({
                'features': str,
                'values': str,
                'scores': float
            })
            current_dict[j] = {
                'actual': localxi['perf']['actual'],
                'prediction': localxi['perf']['predicted'],
                'confidence': localxi['perf']['predicted_score'],
                'data': heatmap_data
            }


if __name__ == "__main__":
    main()