|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel, PretrainedConfig |
|
|
|
|
|
class BaseVAE(nn.Module): |
|
def __init__(self, latent_dim=16): |
|
super(BaseVAE, self).__init__() |
|
self.latent_dim = latent_dim |
|
|
|
self.encoder = nn.Sequential( |
|
nn.Conv2d(3, 32, 4, 2, 1), |
|
nn.BatchNorm2d(32), |
|
nn.ReLU(), |
|
nn.Conv2d(32, 64, 4, 2, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(), |
|
nn.Conv2d(64, 128, 4, 2, 1), |
|
nn.BatchNorm2d(128), |
|
nn.ReLU(), |
|
nn.Flatten() |
|
) |
|
self.fc_mu = nn.Linear(128 * 4 * 4, latent_dim) |
|
self.fc_logvar = nn.Linear(128 * 4 * 4, latent_dim) |
|
|
|
self.decoder_input = nn.Linear(latent_dim, 128 * 4 * 4) |
|
self.decoder = nn.Sequential( |
|
nn.ConvTranspose2d(128, 64, 4, 2, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(), |
|
nn.ConvTranspose2d(64, 32, 4, 2, 1), |
|
nn.BatchNorm2d(32), |
|
nn.ReLU(), |
|
nn.ConvTranspose2d(32, 3, 4, 2, 1), |
|
nn.Sigmoid() |
|
) |
|
|
|
def encode(self, x): |
|
x = self.encoder(x) |
|
mu = self.fc_mu(x) |
|
logvar = self.fc_logvar(x) |
|
return mu, logvar |
|
|
|
def reparameterize(self, mu, logvar): |
|
std = torch.exp(0.5 * logvar) |
|
eps = torch.randn_like(std) |
|
return mu + eps * std |
|
|
|
def decode(self, z): |
|
x = self.decoder_input(z) |
|
x = x.view(-1, 128, 4, 4) |
|
return self.decoder(x) |
|
|
|
def forward(self, x): |
|
mu, logvar = self.encode(x) |
|
z = self.reparameterize(mu, logvar) |
|
recon = self.decode(z) |
|
return recon, mu, logvar |
|
|
|
class VAEConfig(PretrainedConfig): |
|
model_type = "vae" |
|
|
|
def __init__(self, latent_dim=16, **kwargs): |
|
super().__init__(**kwargs) |
|
self.latent_dim = latent_dim |
|
|
|
class VAEModel(PreTrainedModel): |
|
config_class = VAEConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.vae = BaseVAE(latent_dim=config.latent_dim) |
|
self.post_init() |
|
|
|
def forward(self, x): |
|
return self.vae(x) |
|
|
|
def encode(self, x): |
|
return self.vae.encode(x) |
|
|
|
def decode(self, z): |
|
return self.vae.decode(z) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = VAEModel.from_pretrained("DomTheDev/emoji-vae-init").to(device) |
|
model.eval() |
|
|