|
import torch |
|
import gradio as gr |
|
from torchvision import transforms |
|
from PIL import Image |
|
import numpy as np |
|
from model import model |
|
import tempfile |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((32, 32)), |
|
transforms.ToTensor() |
|
]) |
|
|
|
resize_output = transforms.Resize((512, 512)) |
|
|
|
def interpolate_vectors(v1, v2, num_steps): |
|
return [v1 * (1 - alpha) + v2 * alpha for alpha in np.linspace(0, 1, num_steps)] |
|
|
|
def to_pil(img_tensor): |
|
img = img_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() |
|
img = (img * 255).clip(0, 255).astype(np.uint8) |
|
return Image.fromarray(img) |
|
|
|
def interpolate_images_gif(img1, img2, num_interpolations=10, duration=100): |
|
img1 = Image.fromarray(img1).convert('RGB') |
|
img2 = Image.fromarray(img2).convert('RGB') |
|
img1_tensor = transform(img1).unsqueeze(0).to(device) |
|
img2_tensor = transform(img2).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
mu1, _ = model.encode(img1_tensor) |
|
mu2, _ = model.encode(img2_tensor) |
|
interpolated = interpolate_vectors(mu1, mu2, num_interpolations) |
|
decoded_images = [] |
|
for z in interpolated: |
|
out = model.decode(z) |
|
img = to_pil(out) |
|
img_resized = resize_output(img) |
|
decoded_images.append(img_resized) |
|
|
|
tmp_file = tempfile.NamedTemporaryFile(suffix=".gif", delete=False) |
|
decoded_images[0].save( |
|
tmp_file.name, |
|
save_all=True, |
|
append_images=decoded_images[1:], |
|
duration=duration, |
|
loop=0 |
|
) |
|
return tmp_file.name |
|
|
|
def get_interface(): |
|
with gr.Blocks() as iface: |
|
gr.Markdown("## Latent Space Interpolation (GIF Output)") |
|
with gr.Row(): |
|
img1 = gr.Image(label="First Image", type="numpy") |
|
img2 = gr.Image(label="Second Image", type="numpy") |
|
slider_steps = gr.Slider(5, 30, value=10, step=1, label="Number of Interpolations") |
|
slider_duration = gr.Slider(50, 500, value=100, step=10, label="Duration per Frame (ms)") |
|
output_gif = gr.Image(label="Interpolation GIF") |
|
run_button = gr.Button("Interpolate") |
|
|
|
run_button.click( |
|
fn=interpolate_images_gif, |
|
inputs=[img1, img2, slider_steps, slider_duration], |
|
outputs=output_gif |
|
) |
|
|
|
examples = [ |
|
["example_images/image1.jpg", "example_images/image2.jpg", 10, 100], |
|
["example_images/image3.jpg", "example_images/image4.jpg", 15, 150], |
|
["example_images/image5.jpg", "example_images/image6.jpg", 20, 200], |
|
["example_images/image7.jpg", "example_images/image8.jpg", 25, 250], |
|
] |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[img1, img2, slider_steps, slider_duration], |
|
outputs=output_gif, |
|
fn=interpolate_images_gif, |
|
cache_examples=False |
|
) |
|
return iface |
|
|