|
import torch |
|
import gradio as gr |
|
from torchvision import transforms |
|
from PIL import Image |
|
from model import model |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
latent_dim = model.config.latent_dim |
|
|
|
def generate_from_noise(): |
|
z = torch.randn(1, latent_dim).to(device) |
|
with torch.no_grad(): |
|
generated = model.decode(z) |
|
gen_img = generated.squeeze(0).permute(1, 2, 0).cpu().numpy() |
|
gen_pil = Image.fromarray((gen_img * 255).astype("uint8")).resize((512, 512)) |
|
return gen_pil |
|
|
|
def get_interface(): |
|
with gr.Blocks() as iface: |
|
gr.Markdown("## Generate from Random Noise") |
|
generate_button = gr.Button("Generate Image") |
|
output_image = gr.Image(label="Generated Image", type="pil") |
|
generate_button.click(fn=generate_from_noise, inputs=[], outputs=output_image) |
|
|
|
examples = [[]] |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[], |
|
outputs=output_image, |
|
fn=generate_from_noise, |
|
cache_examples=False |
|
) |
|
return iface |
|
|