|
import torch |
|
import gradio as gr |
|
from torchvision import transforms |
|
from PIL import Image |
|
import numpy as np |
|
from model import model |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
resize_input = transforms.Resize((32, 32)) |
|
to_tensor = transforms.ToTensor() |
|
|
|
def reconstruct_image(image): |
|
image = Image.fromarray(image).convert('RGB') |
|
image_32 = resize_input(image) |
|
image_tensor = to_tensor(image_32).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
mu, _ = model.encode(image_tensor) |
|
recon = model.decode(mu) |
|
recon_np = recon.squeeze(0).permute(1, 2, 0).cpu().numpy() |
|
recon_img = Image.fromarray((recon_np * 255).astype(np.uint8)).resize((512, 512)) |
|
orig_resized = image_32.resize((512, 512)) |
|
return orig_resized, recon_img |
|
|
|
def get_interface(): |
|
with gr.Blocks() as iface: |
|
gr.Markdown("## Encoding & Reconstruction") |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input (Downsampled to 32x32)", type="numpy") |
|
output_image = gr.Image(label="Reconstructed", type="pil") |
|
run_button = gr.Button("Run Reconstruction") |
|
|
|
run_button.click(fn=reconstruct_image, inputs=input_image, outputs=[input_image, output_image]) |
|
|
|
examples = [ |
|
["example_images/image1.jpg"], |
|
["example_images/image2.jpg"], |
|
["example_images/image3.jpg"], |
|
["example_images/image10.jpg"], |
|
["example_images/image4.jpg"], |
|
["example_images/image5.jpg"], |
|
["example_images/image6.jpg"], |
|
["example_images/image7.jpg"], |
|
["example_images/image8.jpg"], |
|
] |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[input_image], |
|
) |
|
return iface |
|
|