import requests import gradio as gr import openai openai.api_key = "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" def infer(im): im.save("converted.png") url = "https://ajax.thehive.ai/api/demo/classify?endpoint=text_recognition" files = { "image": ("converted.png", open("converted.png", "rb"), "image/png"), "model_type": (None, "detection"), "media_type": (None, "photo"), } headers = {"referer": "https://thehive.ai/"} res = requests.post(url, headers=headers, files=files) text = "" blocks = [] for output in res.json()["response"]["output"]: text += output["block_text"] for poly in output["bounding_poly"]: blocks.append({ "text": "".join([c["class"] for c in poly["classes"]]), "rect": poly["dimensions"] }) print(blocks) return blocks def gpt(text): print(text) if not text: return "Veuillez saisir une question." f_prompt = f""" reformule ça {text}. """ response = openai.Completion.create( model="text-davinci-003", prompt=f_prompt, temperature=0.9, max_tokens=3500, top_p=1) answer = response.choices[0].text.strip() print(answer) return answer iface = gr.Interface( fn=gpt, title="Mariam - Beta", description=" La maj du siècle. ", inputs=[gr.Image(type="pil")], outputs=gr.Text(), ).launch()