Spaces:
Running
Running
File size: 9,998 Bytes
960b1a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# coding: utf-8
import copy
import logging
import numpy as np
import datetime
from itertools import product
from typing import Any
def format_result_box_dual(step_num, param_name, candidate, fixed_params, dev_metrics, test_metrics, is_best=False):
title = f"Шаг {step_num}: {param_name} = {candidate}"
fixed_lines = [f"{k} = {v}" for k, v in fixed_params.items()]
def format_metrics_block(metrics, label):
lines = [f" Результаты ({label.upper()}):"]
for k in ["uar", "war", "mf1", "wf1", "loss", "mean"]:
if k in metrics:
val = metrics[k]
line = f" {k.upper():12} = {val:.4f}" if isinstance(val, float) else f" {k.upper():12} = {val}"
if is_best and label.lower() == "dev" and k.lower() == "mean":
line += " ✅"
lines.append(line)
return lines
content_lines = [title, " Фиксировано:"]
content_lines += [f" {line}" for line in fixed_lines]
# DEV блок
content_lines += format_metrics_block(dev_metrics, "dev")
content_lines.append("")
# TEST блок
content_lines += format_metrics_block(test_metrics, "test")
# GAP
if "mean" in dev_metrics and "mean" in test_metrics:
gap_val = dev_metrics["mean"] - test_metrics["mean"]
gap_str = f" GAP = {gap_val:+.4f}"
content_lines.append(gap_str)
max_width = max(len(line) for line in content_lines)
border_top = "┌" + "─" * (max_width + 2) + "┐"
border_bot = "└" + "─" * (max_width + 2) + "┘"
box = [border_top]
for line in content_lines:
box.append(f"│ {line.ljust(max_width)} │")
box.append(border_bot)
return "\n".join(box)
def greedy_search(
base_config,
train_loader,
dev_loader,
test_loader,
train_fn,
overrides_file: str,
param_grid: dict[str, list],
default_values: dict[str, Any],
csv_prefix: str = None
):
current_best_params = copy.deepcopy(default_values)
all_param_names = list(param_grid.keys())
model_name = getattr(base_config, "model_name", "UNKNOWN_MODEL")
with open(overrides_file, "a", encoding="utf-8") as f:
f.write("=== Жадный (поэтапный) перебор гиперпараметров (Dev-based) ===\n")
f.write(f"Модель: {model_name}\n")
for i, param_name in enumerate(all_param_names):
candidates = param_grid[param_name]
tried_value = current_best_params[param_name]
if i == 0:
candidates_to_try = candidates
else:
candidates_to_try = [v for v in candidates if v != tried_value]
best_val_for_param = tried_value
best_metric_for_param = float("-inf")
# Если не первый шаг — вставим текущую комбу
if i != 0:
config_default = copy.deepcopy(base_config)
for k, v in current_best_params.items():
setattr(config_default, k, v)
logging.info(f"[ШАГ {i+1}] {param_name} = {tried_value} (ранее проверенный)")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
csv_filename = f"{csv_prefix}_{model_name}_{param_name}_{tried_value}_{timestamp}.csv" if csv_prefix else None
dev_mean_default, dev_metrics_default, test_metrics_default = train_fn(
config_default,
train_loader,
dev_loader,
test_loader,
metrics_csv_path=csv_filename
)
box_text = format_result_box_dual(
step_num=i+1,
param_name=param_name,
candidate=tried_value,
fixed_params={k: v for k, v in current_best_params.items() if k != param_name},
dev_metrics=dev_metrics_default,
test_metrics=test_metrics_default,
is_best=True
)
with open(overrides_file, "a", encoding="utf-8") as f:
f.write("\n" + box_text + "\n")
_log_dataset_metrics(dev_metrics_default, overrides_file, label="dev")
_log_dataset_metrics(test_metrics_default, overrides_file, label="test")
best_metric_for_param = dev_mean_default
for candidate in candidates_to_try:
config = copy.deepcopy(base_config)
for k, v in current_best_params.items():
setattr(config, k, v)
setattr(config, param_name, candidate)
logging.info(f"[ШАГ {i+1}] {param_name} = {candidate}, (остальные {current_best_params})")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
csv_filename = f"{csv_prefix}_{model_name}_{param_name}_{candidate}_{timestamp}.csv" if csv_prefix else None
dev_mean, dev_metrics, test_metrics = train_fn(
config,
train_loader,
dev_loader,
test_loader,
metrics_csv_path=csv_filename
)
is_better = dev_mean > best_metric_for_param
box_text = format_result_box_dual(
step_num=i+1,
param_name=param_name,
candidate=candidate,
fixed_params={k: v for k, v in current_best_params.items() if k != param_name},
dev_metrics=dev_metrics,
test_metrics=test_metrics,
is_best=is_better
)
with open(overrides_file, "a", encoding="utf-8") as f:
f.write("\n" + box_text + "\n")
_log_dataset_metrics(dev_metrics, overrides_file, label="dev")
_log_dataset_metrics(test_metrics, overrides_file, label="test")
if is_better:
best_val_for_param = candidate
best_metric_for_param = dev_mean
current_best_params[param_name] = best_val_for_param
with open(overrides_file, "a", encoding="utf-8") as f:
f.write(f"\n>> [Итог Шаг{i+1}]: Лучший {param_name}={best_val_for_param}, dev_mean={best_metric_for_param:.4f}\n")
with open(overrides_file, "a", encoding="utf-8") as f:
f.write("\n=== Итоговая комбинация (Dev-based) ===\n")
for k, v in current_best_params.items():
f.write(f"{k} = {v}\n")
logging.info("Готово! Лучшие параметры подобраны.")
def exhaustive_search(
base_config,
train_loader,
dev_loader,
test_loader,
train_fn,
overrides_file: str,
param_grid: dict[str, list],
csv_prefix: str = None
):
all_param_names = list(param_grid.keys())
model_name = getattr(base_config, "model_name", "UNKNOWN_MODEL")
with open(overrides_file, "a", encoding="utf-8") as f:
f.write("=== Полный перебор гиперпараметров (Dev-based) ===\n")
f.write(f"Модель: {model_name}\n")
best_config = None
best_metric = float("-inf")
best_metrics = {}
combo_id = 0
for combo in product(*(param_grid[param] for param in all_param_names)):
combo_id += 1
param_combo = dict(zip(all_param_names, combo))
config = copy.deepcopy(base_config)
for k, v in param_combo.items():
setattr(config, k, v)
logging.info(f"\n[Комбинация #{combo_id}] {param_combo}")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
csv_filename = f"{csv_prefix}_{model_name}_combo{combo_id}_{timestamp}.csv" if csv_prefix else None
dev_mean, dev_metrics, test_metrics = train_fn(
config,
train_loader,
dev_loader,
test_loader,
metrics_csv_path=csv_filename
)
is_better = dev_mean > best_metric
box_text = format_result_box_dual(
step_num=combo_id,
param_name=" + ".join(all_param_names),
candidate=str(combo),
fixed_params={},
dev_metrics=dev_metrics,
test_metrics=test_metrics,
is_best=is_better
)
with open(overrides_file, "a", encoding="utf-8") as f:
f.write("\n" + box_text + "\n")
_log_dataset_metrics(dev_metrics, overrides_file, label="dev")
_log_dataset_metrics(test_metrics, overrides_file, label="test")
if is_better:
best_metric = dev_mean
best_config = param_combo
best_metrics = dev_metrics
with open(overrides_file, "a", encoding="utf-8") as f:
f.write("\n=== Лучшая комбинация (Dev-based) ===\n")
for k, v in best_config.items():
f.write(f"{k} = {v}\n")
logging.info("Полный перебор завершён! Лучшие параметры выбраны.")
return best_metric, best_config, best_metrics
def _compute_combined_avg(dev_metrics):
if "by_dataset" not in dev_metrics:
return None
values = []
for entry in dev_metrics["by_dataset"]:
for key in ["uar", "war", "mf1", "wf1"]:
if key in entry:
values.append(entry[key])
return float(np.mean(values)) if values else None
def _log_dataset_metrics(metrics, file_path, label="dev"):
if "by_dataset" not in metrics:
return
with open(file_path, "a", encoding="utf-8") as f:
f.write(f"\n>>> Подробные метрики по каждому датасету ({label}):\n")
for ds in metrics["by_dataset"]:
name = ds.get("name", "unknown")
f.write(f" - {name}:\n")
for k in ["loss", "uar", "war", "mf1", "wf1", "mean"]:
if k in ds:
f.write(f" {k.upper():4} = {ds[k]:.4f}\n")
f.write(f"<<< Конец подробных метрик ({label})\n")
|