File size: 10,863 Bytes
960b1a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# utils/config_loader.py

import os
import toml
import logging

class ConfigLoader:
    """
    Класс для загрузки и обработки конфигурации из `config.toml`.
    """

    def __init__(self, config_path="config.toml"):
        if not os.path.exists(config_path):
            raise FileNotFoundError(f"Файл конфигурации `{config_path}` не найден!")

        self.config = toml.load(config_path)

        # ---------------------------
        # Общие параметры
        # ---------------------------
        self.split = self.config.get("split", "train")

        # ---------------------------
        # Пути к данным
        # ---------------------------
        self.datasets = self.config.get("datasets", {})

        # ---------------------------
        # Пути к синтетическим данным
        # ---------------------------
        synthetic_data_cfg = self.config.get("synthetic_data", {})
        self.use_synthetic_data = synthetic_data_cfg.get("use_synthetic_data", False)
        self.synthetic_path = synthetic_data_cfg.get("synthetic_path", "E:/MELD_S")
        self.synthetic_ratio = synthetic_data_cfg.get("synthetic_ratio", 0.0)

        # ---------------------------
        # Модальности и эмоции
        # ---------------------------
        self.modalities = self.config.get("modalities", ["audio"])
        self.emotion_columns = self.config.get("emotion_columns", ["anger", "disgust", "fear", "happy", "neutral", "sad", "surprise"])

        # ---------------------------
        # DataLoader
        # ---------------------------
        dataloader_cfg = self.config.get("dataloader", {})
        self.num_workers = dataloader_cfg.get("num_workers", 0)
        self.shuffle = dataloader_cfg.get("shuffle", True)
        self.prepare_only = dataloader_cfg.get("prepare_only", False)

        # ---------------------------
        # Аудио
        # ---------------------------
        audio_cfg = self.config.get("audio", {})
        self.sample_rate = audio_cfg.get("sample_rate", 16000)
        self.wav_length = audio_cfg.get("wav_length", 2)
        self.save_merged_audio = audio_cfg.get("save_merged_audio", True)
        self.merged_audio_base_path = audio_cfg.get("merged_audio_base_path", "saved_merges")
        self.merged_audio_suffix = audio_cfg.get("merged_audio_suffix", "_merged")
        self.force_remerge = audio_cfg.get("force_remerge", False)

        # ---------------------------
        # Whisper / Текст
        # ---------------------------
        text_cfg = self.config.get("text", {})
        self.text_source = text_cfg.get("source", "csv")
        self.text_column = text_cfg.get("text_column", "text")
        self.whisper_model = text_cfg.get("whisper_model", "tiny")
        self.max_text_tokens = text_cfg.get("max_tokens", 15)
        self.whisper_device = text_cfg.get("whisper_device", "cuda")
        self.use_whisper_for_nontrain_if_no_text = text_cfg.get("use_whisper_for_nontrain_if_no_text", True)

        # ---------------------------
        # Тренировка: общие
        # ---------------------------
        train_general = self.config.get("train", {}).get("general", {})
        self.random_seed = train_general.get("random_seed", 42)
        self.subset_size = train_general.get("subset_size", 0)
        self.merge_probability = train_general.get("merge_probability", 0)
        self.batch_size = train_general.get("batch_size", 8)
        self.num_epochs = train_general.get("num_epochs", 100)
        self.max_patience = train_general.get("max_patience", 10)
        self.save_best_model = train_general.get("save_best_model", False)
        self.save_prepared_data = train_general.get("save_prepared_data", True)
        self.save_feature_path = train_general.get("save_feature_path", "./features/")
        self.search_type = train_general.get("search_type", "none")
        self.smoothing_probability = train_general.get("smoothing_probability", 0)
        self.path_to_df_ls = train_general.get("path_to_df_ls", None)

        # ---------------------------
        # Тренировка: параметры модели
        # ---------------------------
        train_model = self.config.get("train", {}).get("model", {})
        self.model_name = train_model.get("model_name", "BiFormer")
        self.hidden_dim = train_model.get("hidden_dim", 256)
        self.hidden_dim_gated = train_model.get("hidden_dim_gated", 256)
        self.num_transformer_heads = train_model.get("num_transformer_heads", 8)
        self.num_graph_heads = train_model.get("num_graph_heads", 8)
        self.tr_layer_number = train_model.get("tr_layer_number", 1)
        self.mamba_d_state = train_model.get("mamba_d_state", 16)
        self.mamba_ker_size = train_model.get("mamba_ker_size", 4)
        self.mamba_layer_number = train_model.get("mamba_layer_number", 3)
        self.positional_encoding = train_model.get("positional_encoding", True)
        self.dropout = train_model.get("dropout", 0.0)
        self.out_features = train_model.get("out_features", 128)
        self.mode = train_model.get("mode", "mean")

        # ---------------------------
        # Тренировка: оптимизатор
        # ---------------------------
        train_optimizer = self.config.get("train", {}).get("optimizer", {})
        self.optimizer = train_optimizer.get("optimizer", "adam")
        self.lr = train_optimizer.get("lr", 1e-4)
        self.weight_decay = train_optimizer.get("weight_decay", 0.0)
        self.momentum = train_optimizer.get("momentum", 0.9)

        # ---------------------------
        # Тренировка: шедулер
        # ---------------------------
        train_scheduler = self.config.get("train", {}).get("scheduler", {})
        self.scheduler_type = train_scheduler.get("scheduler_type", "plateau")
        self.warmup_ratio = train_scheduler.get("warmup_ratio", 0.1)

        # ---------------------------
        # Эмбеддинги
        # ---------------------------
        emb_cfg = self.config.get("embeddings", {})
        self.audio_model_name = emb_cfg.get("audio_model", "amiriparian/ExHuBERT")
        self.text_model_name  = emb_cfg.get("text_model", "jinaai/jina-embeddings-v3")
        self.audio_classifier_checkpoint = emb_cfg.get("audio_classifier_checkpoint", "best_audio_model.pt")
        self.text_classifier_checkpoint = emb_cfg.get("text_classifier_checkpoint", "best_text_model.pth")
        self.audio_embedding_dim = emb_cfg.get("audio_embedding_dim", 1024)
        self.text_embedding_dim  = emb_cfg.get("text_embedding_dim", 1024)
        self.emb_normalize = emb_cfg.get("emb_normalize", True)
        self.audio_pooling = emb_cfg.get("audio_pooling", None)
        self.text_pooling  = emb_cfg.get("text_pooling", None)
        self.max_tokens = emb_cfg.get("max_tokens", 256)
        self.emb_device = emb_cfg.get("device", "cuda")

        # ---------------------------
        # Синтетика
        # ---------------------------
        # textgen_cfg = self.config.get("textgen", {})
        # self.model_name = textgen_cfg.get("model_name", "deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
        # self.max_new_tokens = textgen_cfg.get("max_new_tokens", 50)
        # self.temperature = textgen_cfg.get("temperature", 1.0)
        # self.top_p = textgen_cfg.get("top_p", 0.95)

        if __name__ == "__main__":
            self.log_config()

    def log_config(self):
        logging.info("=== CONFIGURATION ===")
        logging.info(f"Split: {self.split}")
        logging.info(f"Datasets loaded: {list(self.datasets.keys())}")
        for name, ds in self.datasets.items():
            logging.info(f"[Dataset: {name}]")
            logging.info(f"  Base Dir: {ds.get('base_dir', 'N/A')}")
            logging.info(f"  CSV Path: {ds.get('csv_path', '')}")
            logging.info(f"  WAV Dir: {ds.get('wav_dir', '')}")
        logging.info(f"Emotion columns: {self.emotion_columns}")

        # Логируем обучающие параметры
        logging.info("--- Training Config ---")
        logging.info(f"Sample Rate={self.sample_rate}, Wav Length={self.wav_length}s")
        logging.info(f"Whisper Model={self.whisper_model}, Device={self.whisper_device}, MaxTokens={self.max_text_tokens}")
        logging.info(f"use_whisper_for_nontrain_if_no_text={self.use_whisper_for_nontrain_if_no_text}")
        logging.info(f"DataLoader: batch_size={self.batch_size}, num_workers={self.num_workers}, shuffle={self.shuffle}")
        logging.info(f"Model Name: {self.model_name}")
        logging.info(f"Random Seed: {self.random_seed}")
        logging.info(f"Hidden Dim: {self.hidden_dim}")
        logging.info(f"Hidden Dim in Gated: {self.hidden_dim_gated}")
        logging.info(f"Num Heads in Transformer: {self.num_transformer_heads}")
        logging.info(f"Num Heads in Graph: {self.num_graph_heads}")
        logging.info(f"Mode stat pooling: {self.mode}")
        logging.info(f"Optimizer: {self.optimizer}")
        logging.info(f"Scheduler Type: {self.scheduler_type}")
        logging.info(f"Warmup Ratio: {self.warmup_ratio}")
        logging.info(f"Weight Decay for Adam: {self.weight_decay}")
        logging.info(f"Momentum (SGD): {self.momentum}")
        logging.info(f"Positional Encoding: {self.positional_encoding}")
        logging.info(f"Number of Transformer Layers: {self.tr_layer_number}")
        logging.info(f"Mamba D State: {self.mamba_d_state}")
        logging.info(f"Mamba Kernel Size: {self.mamba_ker_size}")
        logging.info(f"Mamba Layer Number: {self.mamba_layer_number}")
        logging.info(f"Dropout: {self.dropout}")
        logging.info(f"Out Features: {self.out_features}")
        logging.info(f"LR: {self.lr}")
        logging.info(f"Num Epochs: {self.num_epochs}")
        logging.info(f"Merge Probability={self.merge_probability}")
        logging.info(f"Smoothing Probability={self.smoothing_probability}")
        logging.info(f"Max Patience={self.max_patience}")
        logging.info(f"Save Prepared Data={self.save_prepared_data}")
        logging.info(f"Path to Save Features={self.save_feature_path}")
        logging.info(f"Search Type={self.search_type}")

        # Логируем embeddings
        logging.info("--- Embeddings Config ---")
        logging.info(f"Audio Model: {self.audio_model_name}, Text Model: {self.text_model_name}")
        logging.info(f"Audio dim={self.audio_embedding_dim}, Text dim={self.text_embedding_dim}")
        logging.info(f"Audio pooling={self.audio_pooling}, Text pooling={self.text_pooling}")
        logging.info(f"Emb device={self.emb_device}, Normalize={self.emb_normalize}")

    def show_config(self):
        self.log_config()