Spaces:
Running
Running
File size: 10,863 Bytes
960b1a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# utils/config_loader.py
import os
import toml
import logging
class ConfigLoader:
"""
Класс для загрузки и обработки конфигурации из `config.toml`.
"""
def __init__(self, config_path="config.toml"):
if not os.path.exists(config_path):
raise FileNotFoundError(f"Файл конфигурации `{config_path}` не найден!")
self.config = toml.load(config_path)
# ---------------------------
# Общие параметры
# ---------------------------
self.split = self.config.get("split", "train")
# ---------------------------
# Пути к данным
# ---------------------------
self.datasets = self.config.get("datasets", {})
# ---------------------------
# Пути к синтетическим данным
# ---------------------------
synthetic_data_cfg = self.config.get("synthetic_data", {})
self.use_synthetic_data = synthetic_data_cfg.get("use_synthetic_data", False)
self.synthetic_path = synthetic_data_cfg.get("synthetic_path", "E:/MELD_S")
self.synthetic_ratio = synthetic_data_cfg.get("synthetic_ratio", 0.0)
# ---------------------------
# Модальности и эмоции
# ---------------------------
self.modalities = self.config.get("modalities", ["audio"])
self.emotion_columns = self.config.get("emotion_columns", ["anger", "disgust", "fear", "happy", "neutral", "sad", "surprise"])
# ---------------------------
# DataLoader
# ---------------------------
dataloader_cfg = self.config.get("dataloader", {})
self.num_workers = dataloader_cfg.get("num_workers", 0)
self.shuffle = dataloader_cfg.get("shuffle", True)
self.prepare_only = dataloader_cfg.get("prepare_only", False)
# ---------------------------
# Аудио
# ---------------------------
audio_cfg = self.config.get("audio", {})
self.sample_rate = audio_cfg.get("sample_rate", 16000)
self.wav_length = audio_cfg.get("wav_length", 2)
self.save_merged_audio = audio_cfg.get("save_merged_audio", True)
self.merged_audio_base_path = audio_cfg.get("merged_audio_base_path", "saved_merges")
self.merged_audio_suffix = audio_cfg.get("merged_audio_suffix", "_merged")
self.force_remerge = audio_cfg.get("force_remerge", False)
# ---------------------------
# Whisper / Текст
# ---------------------------
text_cfg = self.config.get("text", {})
self.text_source = text_cfg.get("source", "csv")
self.text_column = text_cfg.get("text_column", "text")
self.whisper_model = text_cfg.get("whisper_model", "tiny")
self.max_text_tokens = text_cfg.get("max_tokens", 15)
self.whisper_device = text_cfg.get("whisper_device", "cuda")
self.use_whisper_for_nontrain_if_no_text = text_cfg.get("use_whisper_for_nontrain_if_no_text", True)
# ---------------------------
# Тренировка: общие
# ---------------------------
train_general = self.config.get("train", {}).get("general", {})
self.random_seed = train_general.get("random_seed", 42)
self.subset_size = train_general.get("subset_size", 0)
self.merge_probability = train_general.get("merge_probability", 0)
self.batch_size = train_general.get("batch_size", 8)
self.num_epochs = train_general.get("num_epochs", 100)
self.max_patience = train_general.get("max_patience", 10)
self.save_best_model = train_general.get("save_best_model", False)
self.save_prepared_data = train_general.get("save_prepared_data", True)
self.save_feature_path = train_general.get("save_feature_path", "./features/")
self.search_type = train_general.get("search_type", "none")
self.smoothing_probability = train_general.get("smoothing_probability", 0)
self.path_to_df_ls = train_general.get("path_to_df_ls", None)
# ---------------------------
# Тренировка: параметры модели
# ---------------------------
train_model = self.config.get("train", {}).get("model", {})
self.model_name = train_model.get("model_name", "BiFormer")
self.hidden_dim = train_model.get("hidden_dim", 256)
self.hidden_dim_gated = train_model.get("hidden_dim_gated", 256)
self.num_transformer_heads = train_model.get("num_transformer_heads", 8)
self.num_graph_heads = train_model.get("num_graph_heads", 8)
self.tr_layer_number = train_model.get("tr_layer_number", 1)
self.mamba_d_state = train_model.get("mamba_d_state", 16)
self.mamba_ker_size = train_model.get("mamba_ker_size", 4)
self.mamba_layer_number = train_model.get("mamba_layer_number", 3)
self.positional_encoding = train_model.get("positional_encoding", True)
self.dropout = train_model.get("dropout", 0.0)
self.out_features = train_model.get("out_features", 128)
self.mode = train_model.get("mode", "mean")
# ---------------------------
# Тренировка: оптимизатор
# ---------------------------
train_optimizer = self.config.get("train", {}).get("optimizer", {})
self.optimizer = train_optimizer.get("optimizer", "adam")
self.lr = train_optimizer.get("lr", 1e-4)
self.weight_decay = train_optimizer.get("weight_decay", 0.0)
self.momentum = train_optimizer.get("momentum", 0.9)
# ---------------------------
# Тренировка: шедулер
# ---------------------------
train_scheduler = self.config.get("train", {}).get("scheduler", {})
self.scheduler_type = train_scheduler.get("scheduler_type", "plateau")
self.warmup_ratio = train_scheduler.get("warmup_ratio", 0.1)
# ---------------------------
# Эмбеддинги
# ---------------------------
emb_cfg = self.config.get("embeddings", {})
self.audio_model_name = emb_cfg.get("audio_model", "amiriparian/ExHuBERT")
self.text_model_name = emb_cfg.get("text_model", "jinaai/jina-embeddings-v3")
self.audio_classifier_checkpoint = emb_cfg.get("audio_classifier_checkpoint", "best_audio_model.pt")
self.text_classifier_checkpoint = emb_cfg.get("text_classifier_checkpoint", "best_text_model.pth")
self.audio_embedding_dim = emb_cfg.get("audio_embedding_dim", 1024)
self.text_embedding_dim = emb_cfg.get("text_embedding_dim", 1024)
self.emb_normalize = emb_cfg.get("emb_normalize", True)
self.audio_pooling = emb_cfg.get("audio_pooling", None)
self.text_pooling = emb_cfg.get("text_pooling", None)
self.max_tokens = emb_cfg.get("max_tokens", 256)
self.emb_device = emb_cfg.get("device", "cuda")
# ---------------------------
# Синтетика
# ---------------------------
# textgen_cfg = self.config.get("textgen", {})
# self.model_name = textgen_cfg.get("model_name", "deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
# self.max_new_tokens = textgen_cfg.get("max_new_tokens", 50)
# self.temperature = textgen_cfg.get("temperature", 1.0)
# self.top_p = textgen_cfg.get("top_p", 0.95)
if __name__ == "__main__":
self.log_config()
def log_config(self):
logging.info("=== CONFIGURATION ===")
logging.info(f"Split: {self.split}")
logging.info(f"Datasets loaded: {list(self.datasets.keys())}")
for name, ds in self.datasets.items():
logging.info(f"[Dataset: {name}]")
logging.info(f" Base Dir: {ds.get('base_dir', 'N/A')}")
logging.info(f" CSV Path: {ds.get('csv_path', '')}")
logging.info(f" WAV Dir: {ds.get('wav_dir', '')}")
logging.info(f"Emotion columns: {self.emotion_columns}")
# Логируем обучающие параметры
logging.info("--- Training Config ---")
logging.info(f"Sample Rate={self.sample_rate}, Wav Length={self.wav_length}s")
logging.info(f"Whisper Model={self.whisper_model}, Device={self.whisper_device}, MaxTokens={self.max_text_tokens}")
logging.info(f"use_whisper_for_nontrain_if_no_text={self.use_whisper_for_nontrain_if_no_text}")
logging.info(f"DataLoader: batch_size={self.batch_size}, num_workers={self.num_workers}, shuffle={self.shuffle}")
logging.info(f"Model Name: {self.model_name}")
logging.info(f"Random Seed: {self.random_seed}")
logging.info(f"Hidden Dim: {self.hidden_dim}")
logging.info(f"Hidden Dim in Gated: {self.hidden_dim_gated}")
logging.info(f"Num Heads in Transformer: {self.num_transformer_heads}")
logging.info(f"Num Heads in Graph: {self.num_graph_heads}")
logging.info(f"Mode stat pooling: {self.mode}")
logging.info(f"Optimizer: {self.optimizer}")
logging.info(f"Scheduler Type: {self.scheduler_type}")
logging.info(f"Warmup Ratio: {self.warmup_ratio}")
logging.info(f"Weight Decay for Adam: {self.weight_decay}")
logging.info(f"Momentum (SGD): {self.momentum}")
logging.info(f"Positional Encoding: {self.positional_encoding}")
logging.info(f"Number of Transformer Layers: {self.tr_layer_number}")
logging.info(f"Mamba D State: {self.mamba_d_state}")
logging.info(f"Mamba Kernel Size: {self.mamba_ker_size}")
logging.info(f"Mamba Layer Number: {self.mamba_layer_number}")
logging.info(f"Dropout: {self.dropout}")
logging.info(f"Out Features: {self.out_features}")
logging.info(f"LR: {self.lr}")
logging.info(f"Num Epochs: {self.num_epochs}")
logging.info(f"Merge Probability={self.merge_probability}")
logging.info(f"Smoothing Probability={self.smoothing_probability}")
logging.info(f"Max Patience={self.max_patience}")
logging.info(f"Save Prepared Data={self.save_prepared_data}")
logging.info(f"Path to Save Features={self.save_feature_path}")
logging.info(f"Search Type={self.search_type}")
# Логируем embeddings
logging.info("--- Embeddings Config ---")
logging.info(f"Audio Model: {self.audio_model_name}, Text Model: {self.text_model_name}")
logging.info(f"Audio dim={self.audio_embedding_dim}, Text dim={self.text_embedding_dim}")
logging.info(f"Audio pooling={self.audio_pooling}, Text pooling={self.text_pooling}")
logging.info(f"Emb device={self.emb_device}, Normalize={self.emb_normalize}")
def show_config(self):
self.log_config()
|