File size: 13,537 Bytes
960b1a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# coding: utf-8
# train_utils.py

import os
import torch
import logging
import random
import datetime
import numpy as np
from tqdm import tqdm
import csv

from torch.utils.data import DataLoader, ConcatDataset
from utils.losses import WeightedCrossEntropyLoss
from utils.measures import uar, war, mf1, wf1
from models.models import BiFormer, BiGraphFormer, BiGatedGraphFormer
from data_loading.dataset_multimodal import DatasetMultiModal
from data_loading.feature_extractor import AudioEmbeddingExtractor, TextEmbeddingExtractor
from sklearn.utils.class_weight import compute_class_weight

def custom_collate_fn(batch):
    """Собирает список образцов в единый батч, отбрасывая None (невалидные)."""
    batch = [x for x in batch if x is not None]
    if not batch:
        return None

    audios = [b["audio"] for b in batch]
    audio_tensor = torch.stack(audios)

    labels = [b["label"] for b in batch]
    label_tensor = torch.stack(labels)

    texts = [b["text"] for b in batch]

    return {
        "audio": audio_tensor,
        "label": label_tensor,
        "text": texts
    }

def get_class_weights_from_loader(train_loader, num_classes):
    """
    Вычисляет веса классов из train_loader, устойчиво к отсутствующим классам.
    Если какой-либо класс отсутствует в выборке, ему будет присвоен вес 0.0.

    :param train_loader: DataLoader с one-hot метками
    :param num_classes: Общее количество классов
    :return: np.ndarray весов длины num_classes
    """
    all_labels = []
    for batch in train_loader:
        if batch is None:
            continue
        all_labels.extend(batch["label"].argmax(dim=1).tolist())

    if not all_labels:
        raise ValueError("Нет ни одной метки в train_loader для вычисления весов классов.")

    present_classes = np.unique(all_labels)

    if len(present_classes) < num_classes:
        missing = set(range(num_classes)) - set(present_classes)
        logging.info(f"[!] Отсутствуют метки для классов: {sorted(missing)}")

    # Вычисляем веса только по тем классам, что есть
    weights_partial = compute_class_weight(
        class_weight="balanced",
        classes=present_classes,
        y=all_labels
    )

    # Собираем полный вектор весов
    full_weights = np.zeros(num_classes, dtype=np.float32)
    for cls, w in zip(present_classes, weights_partial):
        full_weights[cls] = w

    return full_weights

def make_dataset_and_loader(config, split: str, only_dataset: str = None):
    """
    Универсальная функция: объединяет датасеты, или возвращает один при only_dataset.
    """
    datasets = []

    if not hasattr(config, "datasets") or not config.datasets:
        raise ValueError("⛔ В конфиге не указана секция [datasets].")

    for dataset_name, dataset_cfg in config.datasets.items():
        if only_dataset and dataset_name != only_dataset:
            continue

        csv_path = dataset_cfg["csv_path"].format(base_dir=dataset_cfg["base_dir"], split=split)
        wav_dir  = dataset_cfg["wav_dir"].format(base_dir=dataset_cfg["base_dir"], split=split)

        logging.info(f"[{dataset_name.upper()}] Split={split}: CSV={csv_path}, WAV_DIR={wav_dir}")

        dataset = DatasetMultiModal(
            csv_path = csv_path,
            wav_dir  = wav_dir,
            emotion_columns = config.emotion_columns,
            split          = split,
            sample_rate    = config.sample_rate,
            wav_length     = config.wav_length,
            whisper_model  = config.whisper_model,
            text_column    = config.text_column,
            use_whisper_for_nontrain_if_no_text = config.use_whisper_for_nontrain_if_no_text,
            whisper_device = config.whisper_device,
            subset_size    = config.subset_size,
            merge_probability = config.merge_probability
        )

        datasets.append(dataset)

    if not datasets:
        raise ValueError(f"⚠️ Для split='{split}' не найдено ни одного подходящего датасета.")

    # Объединяем только если их несколько
    full_dataset = datasets[0] if len(datasets) == 1 else ConcatDataset(datasets)

    loader = DataLoader(
        full_dataset,
        batch_size=config.batch_size,
        shuffle=(split == "train"),
        num_workers=config.num_workers,
        collate_fn=custom_collate_fn
    )

    return full_dataset, loader

def run_eval(model, loader, audio_extractor, text_extractor, criterion, device="cuda"):
    """
    Оценка модели на loader'е. Возвращает (loss, uar, war, mf1, wf1).
    """
    model.eval()
    total_loss = 0.0
    total_preds = []
    total_targets = []
    total = 0

    with torch.no_grad():
        for batch in tqdm(loader):
            if batch is None:
                continue

            audio  = batch["audio"].to(device)
            labels = batch["label"].to(device)
            texts  = batch["text"]

            audio_emb = audio_extractor.extract(audio)
            text_emb  = text_extractor.extract(texts)

            logits = model(audio_emb, text_emb)
            target = labels.argmax(dim=1)

            loss = criterion(logits, target)
            bs = audio.shape[0]
            total_loss += loss.item() * bs
            total += bs

            preds = logits.argmax(dim=1)
            total_preds.extend(preds.cpu().numpy().tolist())
            total_targets.extend(target.cpu().numpy().tolist())

    avg_loss = total_loss / total

    uar_m = uar(total_targets, total_preds)
    war_m = war(total_targets, total_preds)
    mf1_m = mf1(total_targets, total_preds)
    wf1_m = wf1(total_targets, total_preds)

    return avg_loss, uar_m, war_m, mf1_m, wf1_m

def train_once(config, train_loader, dev_loaders, test_loaders, metrics_csv_path=None):
    """
    Логика обучения (train/dev/test).
    Возвращает лучшую метрику на dev и словарь метрик.
    """

    logging.info("== Запуск тренировки (train/dev/test) ==")

    csv_writer = None
    csv_file = None

    if metrics_csv_path:
        csv_file = open(metrics_csv_path, mode="w", newline="", encoding="utf-8")
        csv_writer = csv.writer(csv_file)
        csv_writer.writerow(["split", "epoch", "dataset", "loss", "uar", "war", "mf1", "wf1", "mean"])


    # Seed
    if config.random_seed > 0:
        random.seed(config.random_seed)
        torch.manual_seed(config.random_seed)
        logging.info(f"== Фиксируем random seed: {config.random_seed}")
    else:
        logging.info("== Random seed не фиксирован (0).")

    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Экстракторы
    audio_extractor = AudioEmbeddingExtractor(config)
    text_extractor  = TextEmbeddingExtractor(config)

    # Параметры
    hidden_dim            = config.hidden_dim
    num_classes           = len(config.emotion_columns)
    num_transformer_heads = config.num_transformer_heads
    num_graph_heads       = config.num_graph_heads
    hidden_dim_gated      = config.hidden_dim_gated
    mode                  = config.mode
    positional_encoding   = config.positional_encoding
    dropout               = config.dropout
    out_features          = config.out_features
    lr                    = config.lr
    num_epochs            = config.num_epochs
    tr_layer_number       = config.tr_layer_number
    max_patience          = config.max_patience

    dict_models = {
        'BiFormer': BiFormer,
        'BiGraphFormer': BiGraphFormer,
        'BiGatedGraphFormer': BiGatedGraphFormer,
        # 'MultiModalTransformer_v5': MultiModalTransformer_v5,
        # 'MultiModalTransformer_v4': MultiModalTransformer_v4,
        # 'MultiModalTransformer_v3': MultiModalTransformer_v3
    }

    model_cls = dict_models[config.model_name]
    model = model_cls(
        audio_dim             = config.audio_embedding_dim,
        text_dim              = config.text_embedding_dim,
        hidden_dim            = hidden_dim,
        hidden_dim_gated      = hidden_dim_gated,
        num_transformer_heads = num_transformer_heads,
        num_graph_heads       = num_graph_heads,
        seg_len               = config.max_tokens,
        mode                  = mode,
        dropout               = dropout,
        positional_encoding   = positional_encoding,
        out_features          = out_features,
        tr_layer_number       = tr_layer_number,
        device                = device,
        num_classes           = num_classes
    ).to(device)

    # Оптимизатор и лосс
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)

    class_weights = get_class_weights_from_loader(train_loader, num_classes)
    criterion = WeightedCrossEntropyLoss(class_weights)

    logging.info("Class weights: " + ", ".join(f"{name}={weight:.4f}" for name, weight in zip(config.emotion_columns, class_weights)))

    # LR Scheduler
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer,
        mode="max",
        factor=0.5,
        patience=2,
        min_lr=1e-7
    )

    # Early stopping по dev
    best_dev_mean = float("-inf")
    best_dev_metrics = {}
    patience_counter = 0

    for epoch in range(num_epochs):
        logging.info(f"\n=== Эпоха {epoch} ===")
        model.train()

        total_loss = 0.0
        total_samples = 0
        total_preds = []
        total_targets = []

        for batch in tqdm(train_loader):
            if batch is None:
                continue

            audio  = batch["audio"].to(device)
            labels = batch["label"].to(device)
            texts  = batch["text"]

            audio_emb = audio_extractor.extract(audio)
            text_emb  = text_extractor.extract(texts)

            logits = model(audio_emb, text_emb)
            target = labels.argmax(dim=1)
            loss   = criterion(logits, target)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            bs = audio.shape[0]
            total_loss += loss.item() * bs

            preds = logits.argmax(dim=1)
            total_preds.extend(preds.cpu().numpy().tolist())
            total_targets.extend(target.cpu().numpy().tolist())
            total_samples += bs

        train_loss = total_loss / total_samples
        uar_m = uar(total_targets, total_preds)
        war_m = war(total_targets, total_preds)
        mf1_m = mf1(total_targets, total_preds)
        wf1_m = wf1(total_targets, total_preds)
        mean_train = np.mean([uar_m, war_m, mf1_m, wf1_m])

        logging.info(
            f"[TRAIN] Loss={train_loss:.4f}, UAR={uar_m:.4f}, WAR={war_m:.4f}, "
            f"MF1={mf1_m:.4f}, WF1={wf1_m:.4f}, MEAN={mean_train:.4f}"
        )

        # --- DEV ---
        dev_means = []
        dev_metrics_by_dataset = []

        for name, loader in dev_loaders:
            d_loss, d_uar, d_war, d_mf1, d_wf1 = run_eval(
                model, loader, audio_extractor, text_extractor, criterion, device
            )
            d_mean = np.mean([d_uar, d_war, d_mf1, d_wf1])
            dev_means.append(d_mean)

            if csv_writer:
                csv_writer.writerow(["dev", epoch, name, d_loss, d_uar, d_war, d_mf1, d_wf1, d_mean])

            logging.info(
                f"[DEV:{name}] Loss={d_loss:.4f}, UAR={d_uar:.4f}, WAR={d_war:.4f}, "
                f"MF1={d_mf1:.4f}, WF1={d_wf1:.4f}, MEAN={d_mean:.4f}"
            )

            dev_metrics_by_dataset.append({
                "name": name,
                "loss": d_loss,
                "uar": d_uar,
                "war": d_war,
                "mf1": d_mf1,
                "wf1": d_wf1,
                "mean": d_mean,
            })

        mean_dev = np.mean(dev_means)
        scheduler.step(mean_dev)

        if mean_dev > best_dev_mean:
            best_dev_mean = mean_dev
            patience_counter = 0
            best_dev_metrics = {
                "mean": mean_dev
            }
            best_dev_metrics["by_dataset"] = dev_metrics_by_dataset
        else:
            patience_counter += 1
            if patience_counter >= max_patience:
                logging.info(f"Early stopping: {max_patience} эпох без улучшения.")
                break

        # --- TEST ---
        for name, loader in test_loaders:
            t_loss, t_uar, t_war, t_mf1, t_wf1 = run_eval(
                model, loader, audio_extractor, text_extractor, criterion, device
            )
            t_mean = np.mean([t_uar, t_war, t_mf1, t_wf1])
            logging.info(
                f"[TEST:{name}] Loss={t_loss:.4f}, UAR={t_uar:.4f}, WAR={t_war:.4f}, "
                f"MF1={t_mf1:.4f}, WF1={t_wf1:.4f}, MEAN={t_mean:.4f}"
            )

            if csv_writer:
                csv_writer.writerow(["test", epoch, name, t_loss, t_uar, t_war, t_mf1, t_wf1, t_mean])

    if csv_file:
        csv_file.close()

    logging.info("Тренировка завершена. Все split'ы обработаны!")
    return best_dev_mean, best_dev_metrics