Spaces:
Running
Running
File size: 22,643 Bytes
960b1a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
# coding: utf-8
# train_utils.py
import torch
import logging
import random
import numpy as np
import csv
import pandas as pd
from tqdm import tqdm
from typing import Type
import os
import datetime
from torch.utils.data import DataLoader, ConcatDataset, WeightedRandomSampler
from torch.nn.utils.rnn import pad_sequence
from utils.losses import WeightedCrossEntropyLoss
from utils.measures import uar, war, mf1, wf1
from models.models import (
BiFormer, BiGraphFormer, BiGatedGraphFormer,
PredictionsFusion, BiFormerWithProb, BiGatedFormer,
BiMamba, BiMambaWithProb,BiGraphFormerWithProb, BiGatedGraphFormerWithProb
)
from utils.schedulers import SmartScheduler
from data_loading.dataset_multimodal import DatasetMultiModalWithPretrainedExtractors
from sklearn.utils.class_weight import compute_class_weight
from lion_pytorch import Lion
def get_smoothed_labels(audio_paths, original_labels, smooth_labels_df, smooth_mask, emotion_columns, device):
"""
audio_paths: список путей к аудиофайлам
smooth_mask: тензор boolean с индексами для сглаживания
Возвращает тензор сглаженных меток только для отмеченных примеров
"""
# Получаем индексы для сглаживания
smooth_indices = torch.where(smooth_mask)[0]
# Создаем тензор для результатов (такого же размера как оригинальные метки)
smoothed_labels = torch.zeros_like(original_labels)
# print(smooth_labels_df, audio_paths)
for idx in smooth_indices:
audio_path = audio_paths[idx]
# Получаем сглаженную метку из вашего DataFrame или другого источника
smoothed_label = smooth_labels_df.loc[
smooth_labels_df['video_name'] == audio_path[:-4],
emotion_columns
].values[0]
smoothed_labels[idx] = torch.tensor(smoothed_label, device=device)
return smoothed_labels
def custom_collate_fn(batch):
"""Собирает список образцов в единый батч, отбрасывая None (невалидные)."""
batch = [x for x in batch if x is not None]
# print(batch[0].keys())
if not batch:
return None
audios = [b["audio"] for b in batch]
# audio_tensor = torch.stack(audios)
audio_tensor = pad_sequence(audios, batch_first=True)
labels = [b["label"] for b in batch]
label_tensor = torch.stack(labels)
texts = [b["text"] for b in batch]
text_tensor = torch.stack(texts)
audio_pred = [b["audio_pred"] for b in batch]
audio_pred = torch.stack(audio_pred)
text_pred = [b["text_pred"] for b in batch]
text_pred = torch.stack(text_pred)
return {
"audio_paths": [b["audio_path"] for b in batch], # new
"audio": audio_tensor,
"label": label_tensor,
"text": text_tensor,
"audio_pred": audio_pred,
"text_pred": text_pred,
}
def get_class_weights_from_loader(train_loader, num_classes):
"""
Вычисляет веса классов из train_loader, устойчиво к отсутствующим классам.
Если какой-либо класс отсутствует в выборке, ему будет присвоен вес 0.0.
:param train_loader: DataLoader с one-hot метками
:param num_classes: Общее количество классов
:return: np.ndarray весов длины num_classes
"""
all_labels = []
for batch in train_loader:
if batch is None:
continue
all_labels.extend(batch["label"].argmax(dim=1).tolist())
if not all_labels:
raise ValueError("Нет ни одной метки в train_loader для вычисления весов классов.")
present_classes = np.unique(all_labels)
if len(present_classes) < num_classes:
missing = set(range(num_classes)) - set(present_classes)
logging.info(f"[!] Отсутствуют метки для классов: {sorted(missing)}")
# Вычисляем веса только по тем классам, что есть
weights_partial = compute_class_weight(
class_weight="balanced",
classes=present_classes,
y=all_labels
)
# Собираем полный вектор весов
full_weights = np.zeros(num_classes, dtype=np.float32)
for cls, w in zip(present_classes, weights_partial):
full_weights[cls] = w
return full_weights
def make_dataset_and_loader(config, split: str, audio_feature_extractor: Type = None, text_feature_extractor: Type = None, whisper_model: Type = None, only_dataset: str = None):
"""
Универсальная функция: объединяет датасеты или возвращает один при only_dataset.
При объединении train-датасетов — использует WeightedRandomSampler для балансировки.
"""
datasets = []
if not hasattr(config, "datasets") or not config.datasets:
raise ValueError("⛔ В конфиге не указана секция [datasets].")
for dataset_name, dataset_cfg in config.datasets.items():
if only_dataset and dataset_name != only_dataset:
continue
csv_path = dataset_cfg["csv_path"].format(base_dir=dataset_cfg["base_dir"], split=split)
wav_dir = dataset_cfg["wav_dir"].format(base_dir=dataset_cfg["base_dir"], split=split)
logging.info(f"[{dataset_name.upper()}] Split={split}: CSV={csv_path}, WAV_DIR={wav_dir}")
dataset = DatasetMultiModalWithPretrainedExtractors(
csv_path = csv_path,
wav_dir = wav_dir,
emotion_columns = config.emotion_columns,
split = split,
config = config,
audio_feature_extractor = audio_feature_extractor,
text_feature_extractor = text_feature_extractor,
whisper_model = whisper_model,
dataset_name = dataset_name
)
datasets.append(dataset)
if not datasets:
raise ValueError(f"⚠️ Для split='{split}' не найдено ни одного подходящего датасета.")
if len(datasets) == 1:
full_dataset = datasets[0]
loader = DataLoader(
full_dataset,
batch_size=config.batch_size,
shuffle=(split == "train"),
num_workers=config.num_workers,
collate_fn=custom_collate_fn
)
else:
# Несколько датасетов — собираем веса
lengths = [len(d) for d in datasets]
total = sum(lengths)
logging.info(f"[!] Объединяем {len(datasets)} датасетов: {lengths} (total={total})")
weights = []
for d_len in lengths:
w = 1.0 / d_len
weights += [w] * d_len
logging.info(f" ➜ Сэмплы из датасета с {d_len} примерами получают вес {w:.6f}")
full_dataset = ConcatDataset(datasets)
if split == "train":
sampler = WeightedRandomSampler(weights, num_samples=total, replacement=True)
loader = DataLoader(
full_dataset,
batch_size=config.batch_size,
sampler=sampler,
num_workers=config.num_workers,
collate_fn=custom_collate_fn
)
else:
loader = DataLoader(
full_dataset,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.num_workers,
collate_fn=custom_collate_fn
)
return full_dataset, loader
def run_eval(model, loader, criterion, model_name, device="cuda"):
"""
Оценка модели на loader'е. Возвращает (loss, uar, war, mf1, wf1).
"""
model.eval()
total_loss = 0.0
total_preds = []
total_targets = []
total = 0
with torch.no_grad():
for batch in tqdm(loader):
if batch is None:
continue
audio = batch["audio"].to(device)
labels = batch["label"].to(device)
texts = batch["text"]
audio_pred = batch["audio_pred"].to(device)
text_pred = batch["text_pred"].to(device)
if "fusion" in model_name:
logits = model((audio_pred, text_pred))
elif "withprob" in model_name:
logits = model(audio, texts, audio_pred, text_pred)
else:
logits = model(audio, texts)
target = labels.argmax(dim=1)
loss = criterion(logits, target)
bs = audio.shape[0]
total_loss += loss.item() * bs
total += bs
preds = logits.argmax(dim=1)
total_preds.extend(preds.cpu().numpy().tolist())
total_targets.extend(target.cpu().numpy().tolist())
avg_loss = total_loss / total
uar_m = uar(total_targets, total_preds)
war_m = war(total_targets, total_preds)
mf1_m = mf1(total_targets, total_preds)
wf1_m = wf1(total_targets, total_preds)
return avg_loss, uar_m, war_m, mf1_m, wf1_m
def train_once(config, train_loader, dev_loaders, test_loaders, metrics_csv_path=None):
"""
Логика обучения (train/dev/test).
Возвращает лучшую метрику на dev и словарь метрик.
"""
logging.info("== Запуск тренировки (train/dev/test) ==")
checkpoint_dir = None
if config.save_best_model:
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
checkpoint_dir = os.path.join("checkpoints", f"{config.model_name}_{timestamp}")
os.makedirs(checkpoint_dir, exist_ok=True)
csv_writer = None
csv_file = None
if config.path_to_df_ls:
df_ls = pd.read_csv(config.path_to_df_ls)
if metrics_csv_path:
csv_file = open(metrics_csv_path, mode="w", newline="", encoding="utf-8")
csv_writer = csv.writer(csv_file)
csv_writer.writerow(["split", "epoch", "dataset", "loss", "uar", "war", "mf1", "wf1", "mean"])
# Seed
if config.random_seed > 0:
random.seed(config.random_seed)
torch.manual_seed(config.random_seed)
torch.cuda.manual_seed_all(config.random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(config.random_seed)
logging.info(f"== Фиксируем random seed: {config.random_seed}")
else:
logging.info("== Random seed не фиксирован (0).")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Экстракторы
# audio_extractor = AudioEmbeddingExtractor(config)
# text_extractor = TextEmbeddingExtractor(config)
# Параметры
hidden_dim = config.hidden_dim
num_classes = len(config.emotion_columns)
num_transformer_heads = config.num_transformer_heads
num_graph_heads = config.num_graph_heads
hidden_dim_gated = config.hidden_dim_gated
mamba_d_state = config.mamba_d_state
mamba_ker_size = config.mamba_ker_size
mamba_layer_number = config.mamba_layer_number
mode = config.mode
weight_decay = config.weight_decay
momentum = config.momentum
positional_encoding = config.positional_encoding
dropout = config.dropout
out_features = config.out_features
lr = config.lr
num_epochs = config.num_epochs
tr_layer_number = config.tr_layer_number
max_patience = config.max_patience
scheduler_type = config.scheduler_type
dict_models = {
'BiFormer': BiFormer, # вход audio, texts
'BiGraphFormer': BiGraphFormer, # вход audio, texts
'BiGatedGraphFormer': BiGatedGraphFormer, # вход audio, texts
"BiGatedFormer": BiGatedFormer, # вход audio, texts
"BiMamba": BiMamba, # вход audio, texts
"PredictionsFusion": PredictionsFusion, # вход audio_pred, text_pred
"BiFormerWithProb": BiFormerWithProb, # вход audio, texts, audio_pred, text_pred
"BiMambaWithProb": BiMambaWithProb, # вход audio, texts, audio_pred, text_pred
"BiGraphFormerWithProb": BiGraphFormerWithProb, # вход audio, texts, audio_pred, text_pred
"BiGatedGraphFormerWithProb": BiGatedGraphFormerWithProb,
}
model_cls = dict_models[config.model_name]
model_name = config.model_name.lower()
if model_name == 'predictionsfusion':
model = model_cls().to(device)
elif 'mamba' in model_name:
# Особые параметры для Mamba-семейства
model = model_cls(
audio_dim = config.audio_embedding_dim,
text_dim = config.text_embedding_dim,
hidden_dim = hidden_dim,
mamba_d_state = mamba_d_state,
mamba_ker_size = mamba_ker_size,
mamba_layer_number = mamba_layer_number,
seg_len = config.max_tokens,
mode = mode,
dropout = dropout,
positional_encoding = positional_encoding,
out_features = out_features,
device = device,
num_classes = num_classes
).to(device)
else:
# Обычные модели
model = model_cls(
audio_dim = config.audio_embedding_dim,
text_dim = config.text_embedding_dim,
hidden_dim = hidden_dim,
hidden_dim_gated = hidden_dim_gated,
num_transformer_heads = num_transformer_heads,
num_graph_heads = num_graph_heads,
seg_len = config.max_tokens,
mode = mode,
dropout = dropout,
positional_encoding = positional_encoding,
out_features = out_features,
tr_layer_number = tr_layer_number,
device = device,
num_classes = num_classes
).to(device)
# Оптимизатор и лосс
if config.optimizer == "adam":
optimizer = torch.optim.Adam(
model.parameters(), lr=lr, weight_decay=weight_decay
)
elif config.optimizer == "adamw":
optimizer = torch.optim.AdamW(
model.parameters(), lr=lr, weight_decay=weight_decay
)
elif config.optimizer == "lion":
optimizer = Lion(
model.parameters(), lr=lr, weight_decay=weight_decay
)
elif config.optimizer == "sgd":
optimizer = torch.optim.SGD(
model.parameters(), lr=lr,momentum = momentum
)
elif config.optimizer == "rmsprop":
optimizer = torch.optim.RMSprop(model.parameters(), lr=lr)
else:
raise ValueError(f"⛔ Неизвестный оптимизатор: {config.optimizer}")
logging.info(f"Используем оптимизатор: {config.optimizer}, learning rate: {lr}")
class_weights = get_class_weights_from_loader(train_loader, num_classes)
criterion = WeightedCrossEntropyLoss(class_weights)
logging.info("Class weights: " + ", ".join(f"{name}={weight:.4f}" for name, weight in zip(config.emotion_columns, class_weights)))
# LR Scheduler
steps_per_epoch = sum(1 for batch in train_loader if batch is not None)
scheduler = SmartScheduler(
scheduler_type=scheduler_type,
optimizer=optimizer,
config=config,
steps_per_epoch=steps_per_epoch
)
# Early stopping по dev
best_dev_mean = float("-inf")
best_dev_metrics = {}
patience_counter = 0
for epoch in range(num_epochs):
logging.info(f"\n=== Эпоха {epoch} ===")
model.train()
total_loss = 0.0
total_samples = 0
total_preds = []
total_targets = []
for batch in tqdm(train_loader):
if batch is None:
continue
audio_paths = batch["audio_paths"] # new
audio = batch["audio"].to(device)
# Обработка меток с частичным сглаживанием
if config.smoothing_probability == 0:
labels = batch["label"].to(device)
else:
# Получаем оригинальные горячие метки
original_labels = batch["label"].to(device)
# Создаем маску для сглаживания (выбираем случайные примеры)
batch_size = original_labels.size(0)
smooth_mask = torch.rand(batch_size, device=device) < config.smoothing_probability
# Получаем сглаженные метки для выбранных примеров
smoothed_labels = get_smoothed_labels(audio_paths, original_labels, df_ls, smooth_mask, config.emotion_columns, device)
# Комбинируем метки
labels = torch.where(
smooth_mask.unsqueeze(1), # Добавляем размерность для broadcast
smoothed_labels.to(device),
original_labels
)
# print(labels)
texts = batch["text"]
audio_pred = batch["audio_pred"].to(device)
text_pred = batch["text_pred"].to(device)
if "fusion" in model_name:
logits = model((audio_pred, text_pred))
elif "withprob" in model_name:
logits = model(audio, texts, audio_pred, text_pred)
else:
logits = model(audio, texts)
target = labels.argmax(dim=1)
loss = criterion(logits, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Если scheduler - One cycle или с Hugging Face
scheduler.step(batch_level=True)
bs = audio.shape[0]
total_loss += loss.item() * bs
preds = logits.argmax(dim=1)
total_preds.extend(preds.cpu().numpy().tolist())
total_targets.extend(target.cpu().numpy().tolist())
total_samples += bs
train_loss = total_loss / total_samples
uar_m = uar(total_targets, total_preds)
war_m = war(total_targets, total_preds)
mf1_m = mf1(total_targets, total_preds)
wf1_m = wf1(total_targets, total_preds)
mean_train = np.mean([uar_m, war_m, mf1_m, wf1_m])
logging.info(
f"[TRAIN] Loss={train_loss:.4f}, UAR={uar_m:.4f}, WAR={war_m:.4f}, "
f"MF1={mf1_m:.4f}, WF1={wf1_m:.4f}, MEAN={mean_train:.4f}"
)
# --- DEV ---
dev_means = []
dev_metrics_by_dataset = []
for name, loader in dev_loaders:
d_loss, d_uar, d_war, d_mf1, d_wf1 = run_eval(
model, loader, criterion, model_name, device
)
d_mean = np.mean([d_uar, d_war, d_mf1, d_wf1])
dev_means.append(d_mean)
if csv_writer:
csv_writer.writerow(["dev", epoch, name, d_loss, d_uar, d_war, d_mf1, d_wf1, d_mean])
logging.info(
f"[DEV:{name}] Loss={d_loss:.4f}, UAR={d_uar:.4f}, WAR={d_war:.4f}, "
f"MF1={d_mf1:.4f}, WF1={d_wf1:.4f}, MEAN={d_mean:.4f}"
)
dev_metrics_by_dataset.append({
"name": name,
"loss": d_loss,
"uar": d_uar,
"war": d_war,
"mf1": d_mf1,
"wf1": d_wf1,
"mean": d_mean,
})
mean_dev = np.mean(dev_means)
scheduler.step(mean_dev)
# --- TEST ---
test_metrics_by_dataset = []
for name, loader in test_loaders:
t_loss, t_uar, t_war, t_mf1, t_wf1 = run_eval(
model, loader, criterion, model_name, device
)
t_mean = np.mean([t_uar, t_war, t_mf1, t_wf1])
logging.info(
f"[TEST:{name}] Loss={t_loss:.4f}, UAR={t_uar:.4f}, WAR={t_war:.4f}, "
f"MF1={t_mf1:.4f}, WF1={t_wf1:.4f}, MEAN={t_mean:.4f}"
)
test_metrics_by_dataset.append({
"name": name,
"loss": t_loss,
"uar": t_uar,
"war": t_war,
"mf1": t_mf1,
"wf1": t_wf1,
"mean": t_mean,
})
if csv_writer:
csv_writer.writerow(["test", epoch, name, t_loss, t_uar, t_war, t_mf1, t_wf1, t_mean])
if mean_dev > best_dev_mean:
best_dev_mean = mean_dev
patience_counter = 0
best_dev_metrics = {
"mean": mean_dev,
"by_dataset": dev_metrics_by_dataset
}
best_test_metrics = {
"mean": np.mean([ds["mean"] for ds in test_metrics_by_dataset]),
"by_dataset": test_metrics_by_dataset
}
if config.save_best_model:
dev_str = f"{mean_dev:.4f}".replace(".", "_")
model_path = os.path.join(checkpoint_dir, f"best_model_dev_{dev_str}_epoch_{epoch}.pt")
torch.save(model.state_dict(), model_path)
logging.info(f"💾 Модель сохранена по лучшему dev (эпоха {epoch}): {model_path}")
else:
patience_counter += 1
if patience_counter >= max_patience:
logging.info(f"Early stopping: {max_patience} эпох без улучшения.")
break
logging.info("Тренировка завершена. Все split'ы обработаны!")
if csv_file:
csv_file.close()
return best_dev_mean, best_dev_metrics, best_test_metrics
|