File size: 22,643 Bytes
960b1a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# coding: utf-8
# train_utils.py

import torch
import logging
import random
import numpy as np
import csv
import pandas as pd
from tqdm import tqdm
from typing import Type
import os
import datetime

from torch.utils.data import DataLoader, ConcatDataset, WeightedRandomSampler
from torch.nn.utils.rnn import pad_sequence

from utils.losses import WeightedCrossEntropyLoss
from utils.measures import uar, war, mf1, wf1
from models.models import (
    BiFormer, BiGraphFormer, BiGatedGraphFormer,
    PredictionsFusion, BiFormerWithProb, BiGatedFormer,
    BiMamba, BiMambaWithProb,BiGraphFormerWithProb, BiGatedGraphFormerWithProb
)
from utils.schedulers import SmartScheduler
from data_loading.dataset_multimodal import DatasetMultiModalWithPretrainedExtractors
from sklearn.utils.class_weight import compute_class_weight
from lion_pytorch import Lion


def get_smoothed_labels(audio_paths, original_labels, smooth_labels_df, smooth_mask, emotion_columns,  device):
    """
    audio_paths: список путей к аудиофайлам
    smooth_mask: тензор boolean с индексами для сглаживания
    Возвращает тензор сглаженных меток только для отмеченных примеров
    """

    # Получаем индексы для сглаживания
    smooth_indices = torch.where(smooth_mask)[0]

    # Создаем тензор для результатов (такого же размера как оригинальные метки)
    smoothed_labels = torch.zeros_like(original_labels)

    # print(smooth_labels_df, audio_paths)

    for idx in smooth_indices:
        audio_path = audio_paths[idx]
        # Получаем сглаженную метку из вашего DataFrame или другого источника
        smoothed_label = smooth_labels_df.loc[
            smooth_labels_df['video_name'] == audio_path[:-4],
            emotion_columns
        ].values[0]

        smoothed_labels[idx] = torch.tensor(smoothed_label, device=device)

    return smoothed_labels

def custom_collate_fn(batch):
    """Собирает список образцов в единый батч, отбрасывая None (невалидные)."""
    batch = [x for x in batch if x is not None]
    # print(batch[0].keys())
    if not batch:
        return None

    audios = [b["audio"] for b in batch]
    # audio_tensor = torch.stack(audios)
    audio_tensor = pad_sequence(audios, batch_first=True)

    labels = [b["label"] for b in batch]
    label_tensor = torch.stack(labels)

    texts = [b["text"] for b in batch]
    text_tensor = torch.stack(texts)

    audio_pred = [b["audio_pred"] for b in batch]
    audio_pred = torch.stack(audio_pred)

    text_pred = [b["text_pred"] for b in batch]
    text_pred = torch.stack(text_pred)

    return {
        "audio_paths": [b["audio_path"] for b in batch], # new
        "audio": audio_tensor,
        "label": label_tensor,
        "text": text_tensor,
        "audio_pred": audio_pred,
        "text_pred": text_pred,
    }

def get_class_weights_from_loader(train_loader, num_classes):
    """
    Вычисляет веса классов из train_loader, устойчиво к отсутствующим классам.
    Если какой-либо класс отсутствует в выборке, ему будет присвоен вес 0.0.

    :param train_loader: DataLoader с one-hot метками
    :param num_classes: Общее количество классов
    :return: np.ndarray весов длины num_classes
    """
    all_labels = []
    for batch in train_loader:
        if batch is None:
            continue
        all_labels.extend(batch["label"].argmax(dim=1).tolist())

    if not all_labels:
        raise ValueError("Нет ни одной метки в train_loader для вычисления весов классов.")

    present_classes = np.unique(all_labels)

    if len(present_classes) < num_classes:
        missing = set(range(num_classes)) - set(present_classes)
        logging.info(f"[!] Отсутствуют метки для классов: {sorted(missing)}")

    # Вычисляем веса только по тем классам, что есть
    weights_partial = compute_class_weight(
        class_weight="balanced",
        classes=present_classes,
        y=all_labels
    )

    # Собираем полный вектор весов
    full_weights = np.zeros(num_classes, dtype=np.float32)
    for cls, w in zip(present_classes, weights_partial):
        full_weights[cls] = w

    return full_weights

def make_dataset_and_loader(config, split: str, audio_feature_extractor: Type = None, text_feature_extractor: Type = None, whisper_model: Type = None, only_dataset: str = None):
    """
    Универсальная функция: объединяет датасеты или возвращает один при only_dataset.
    При объединении train-датасетов — использует WeightedRandomSampler для балансировки.
    """
    datasets = []

    if not hasattr(config, "datasets") or not config.datasets:
        raise ValueError("⛔ В конфиге не указана секция [datasets].")

    for dataset_name, dataset_cfg in config.datasets.items():
        if only_dataset and dataset_name != only_dataset:
            continue

        csv_path = dataset_cfg["csv_path"].format(base_dir=dataset_cfg["base_dir"], split=split)
        wav_dir  = dataset_cfg["wav_dir"].format(base_dir=dataset_cfg["base_dir"], split=split)

        logging.info(f"[{dataset_name.upper()}] Split={split}: CSV={csv_path}, WAV_DIR={wav_dir}")

        dataset = DatasetMultiModalWithPretrainedExtractors(
            csv_path                = csv_path,
            wav_dir                 = wav_dir,
            emotion_columns         = config.emotion_columns,
            split                   = split,
            config                  = config,
            audio_feature_extractor = audio_feature_extractor,
            text_feature_extractor  = text_feature_extractor,
            whisper_model           = whisper_model,
            dataset_name            = dataset_name
        )

        datasets.append(dataset)

    if not datasets:
        raise ValueError(f"⚠️ Для split='{split}' не найдено ни одного подходящего датасета.")

    if len(datasets) == 1:

        full_dataset = datasets[0]
        loader = DataLoader(
            full_dataset,
            batch_size=config.batch_size,
            shuffle=(split == "train"),
            num_workers=config.num_workers,
            collate_fn=custom_collate_fn
        )
    else:
        # Несколько датасетов — собираем веса
        lengths = [len(d) for d in datasets]
        total = sum(lengths)

        logging.info(f"[!] Объединяем {len(datasets)} датасетов: {lengths} (total={total})")

        weights = []
        for d_len in lengths:
            w = 1.0 / d_len
            weights += [w] * d_len
            logging.info(f"  ➜ Сэмплы из датасета с {d_len} примерами получают вес {w:.6f}")

        full_dataset = ConcatDataset(datasets)

        if split == "train":
            sampler = WeightedRandomSampler(weights, num_samples=total, replacement=True)
            loader = DataLoader(
                full_dataset,
                batch_size=config.batch_size,
                sampler=sampler,
                num_workers=config.num_workers,
                collate_fn=custom_collate_fn
            )
        else:
            loader = DataLoader(
                full_dataset,
                batch_size=config.batch_size,
                shuffle=False,
                num_workers=config.num_workers,
                collate_fn=custom_collate_fn
            )

    return full_dataset, loader

def run_eval(model, loader, criterion, model_name,  device="cuda"):
    """
    Оценка модели на loader'е. Возвращает (loss, uar, war, mf1, wf1).
    """
    model.eval()
    total_loss = 0.0
    total_preds = []
    total_targets = []
    total = 0

    with torch.no_grad():
        for batch in tqdm(loader):
            if batch is None:
                continue

            audio  = batch["audio"].to(device)
            labels = batch["label"].to(device)
            texts  = batch["text"]
            audio_pred  = batch["audio_pred"].to(device)
            text_pred = batch["text_pred"].to(device)

            if "fusion" in model_name:
                logits = model((audio_pred, text_pred))
            elif "withprob" in model_name:
                logits = model(audio, texts, audio_pred, text_pred)
            else:
                logits = model(audio, texts)
            target = labels.argmax(dim=1)

            loss = criterion(logits, target)
            bs = audio.shape[0]
            total_loss += loss.item() * bs
            total += bs

            preds = logits.argmax(dim=1)
            total_preds.extend(preds.cpu().numpy().tolist())
            total_targets.extend(target.cpu().numpy().tolist())

    avg_loss = total_loss / total

    uar_m = uar(total_targets, total_preds)
    war_m = war(total_targets, total_preds)
    mf1_m = mf1(total_targets, total_preds)
    wf1_m = wf1(total_targets, total_preds)

    return avg_loss, uar_m, war_m, mf1_m, wf1_m

def train_once(config, train_loader, dev_loaders, test_loaders, metrics_csv_path=None):
    """
    Логика обучения (train/dev/test).
    Возвращает лучшую метрику на dev и словарь метрик.
    """

    logging.info("== Запуск тренировки (train/dev/test) ==")

    checkpoint_dir = None
    if config.save_best_model:
        timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
        checkpoint_dir = os.path.join("checkpoints", f"{config.model_name}_{timestamp}")
        os.makedirs(checkpoint_dir, exist_ok=True)

    csv_writer = None
    csv_file = None

    if config.path_to_df_ls:
        df_ls = pd.read_csv(config.path_to_df_ls)

    if metrics_csv_path:
        csv_file = open(metrics_csv_path, mode="w", newline="", encoding="utf-8")
        csv_writer = csv.writer(csv_file)
        csv_writer.writerow(["split", "epoch", "dataset", "loss", "uar", "war", "mf1", "wf1", "mean"])


    # Seed
    if config.random_seed > 0:
        random.seed(config.random_seed)
        torch.manual_seed(config.random_seed)
        torch.cuda.manual_seed_all(config.random_seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
        os.environ['PYTHONHASHSEED'] = str(config.random_seed)
        logging.info(f"== Фиксируем random seed: {config.random_seed}")
    else:
        logging.info("== Random seed не фиксирован (0).")

    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Экстракторы
    # audio_extractor = AudioEmbeddingExtractor(config)
    # text_extractor  = TextEmbeddingExtractor(config)

    # Параметры
    hidden_dim            = config.hidden_dim
    num_classes           = len(config.emotion_columns)
    num_transformer_heads = config.num_transformer_heads
    num_graph_heads       = config.num_graph_heads
    hidden_dim_gated      = config.hidden_dim_gated
    mamba_d_state         = config.mamba_d_state
    mamba_ker_size        = config.mamba_ker_size
    mamba_layer_number    = config.mamba_layer_number
    mode                  = config.mode
    weight_decay          = config.weight_decay
    momentum              = config.momentum
    positional_encoding   = config.positional_encoding
    dropout               = config.dropout
    out_features          = config.out_features
    lr                    = config.lr
    num_epochs            = config.num_epochs
    tr_layer_number       = config.tr_layer_number
    max_patience          = config.max_patience
    scheduler_type        = config.scheduler_type

    dict_models = {
        'BiFormer': BiFormer, # вход audio, texts
        'BiGraphFormer': BiGraphFormer, # вход audio, texts
        'BiGatedGraphFormer': BiGatedGraphFormer, # вход audio, texts
        "BiGatedFormer": BiGatedFormer, # вход audio, texts
        "BiMamba": BiMamba, # вход audio, texts
        "PredictionsFusion": PredictionsFusion, # вход audio_pred, text_pred
        "BiFormerWithProb": BiFormerWithProb, # вход audio, texts, audio_pred, text_pred
        "BiMambaWithProb": BiMambaWithProb, # вход audio, texts, audio_pred, text_pred
        "BiGraphFormerWithProb": BiGraphFormerWithProb, # вход audio, texts, audio_pred, text_pred
        "BiGatedGraphFormerWithProb": BiGatedGraphFormerWithProb,
    }

    model_cls = dict_models[config.model_name]
    model_name = config.model_name.lower()

    if model_name == 'predictionsfusion':
        model = model_cls().to(device)

    elif 'mamba' in model_name:
        # Особые параметры для Mamba-семейства
        model = model_cls(
            audio_dim             = config.audio_embedding_dim,
            text_dim              = config.text_embedding_dim,
            hidden_dim            = hidden_dim,
            mamba_d_state         = mamba_d_state,
            mamba_ker_size        = mamba_ker_size,
            mamba_layer_number    = mamba_layer_number,
            seg_len               = config.max_tokens,
            mode                  = mode,
            dropout               = dropout,
            positional_encoding   = positional_encoding,
            out_features          = out_features,
            device                = device,
            num_classes           = num_classes
        ).to(device)

    else:
        # Обычные модели
        model = model_cls(
            audio_dim             = config.audio_embedding_dim,
            text_dim              = config.text_embedding_dim,
            hidden_dim            = hidden_dim,
            hidden_dim_gated      = hidden_dim_gated,
            num_transformer_heads = num_transformer_heads,
            num_graph_heads       = num_graph_heads,
            seg_len               = config.max_tokens,
            mode                  = mode,
            dropout               = dropout,
            positional_encoding   = positional_encoding,
            out_features          = out_features,
            tr_layer_number       = tr_layer_number,
            device                = device,
            num_classes           = num_classes
        ).to(device)

    # Оптимизатор и лосс
    if config.optimizer == "adam":
        optimizer = torch.optim.Adam(
            model.parameters(), lr=lr, weight_decay=weight_decay
        )
    elif config.optimizer == "adamw":
        optimizer = torch.optim.AdamW(
            model.parameters(), lr=lr, weight_decay=weight_decay
        )
    elif config.optimizer == "lion":
        optimizer = Lion(
            model.parameters(), lr=lr, weight_decay=weight_decay
        )
    elif config.optimizer == "sgd":
        optimizer = torch.optim.SGD(
            model.parameters(), lr=lr,momentum = momentum
        )
    elif config.optimizer == "rmsprop":
        optimizer = torch.optim.RMSprop(model.parameters(), lr=lr)
    else:
        raise ValueError(f"⛔ Неизвестный оптимизатор: {config.optimizer}")

    logging.info(f"Используем оптимизатор: {config.optimizer}, learning rate: {lr}")

    class_weights = get_class_weights_from_loader(train_loader, num_classes)
    criterion = WeightedCrossEntropyLoss(class_weights)

    logging.info("Class weights: " + ", ".join(f"{name}={weight:.4f}" for name, weight in zip(config.emotion_columns, class_weights)))

    # LR Scheduler
    steps_per_epoch = sum(1 for batch in train_loader if batch is not None)
    scheduler = SmartScheduler(
        scheduler_type=scheduler_type,
        optimizer=optimizer,
        config=config,
        steps_per_epoch=steps_per_epoch
    )

    # Early stopping по dev
    best_dev_mean = float("-inf")
    best_dev_metrics = {}
    patience_counter = 0

    for epoch in range(num_epochs):
        logging.info(f"\n=== Эпоха {epoch} ===")
        model.train()

        total_loss = 0.0
        total_samples = 0
        total_preds = []
        total_targets = []

        for batch in tqdm(train_loader):
            if batch is None:
                continue

            audio_paths =  batch["audio_paths"]  # new
            audio = batch["audio"].to(device)

            # Обработка меток с частичным сглаживанием
            if config.smoothing_probability == 0:
                labels = batch["label"].to(device)
            else:
                # Получаем оригинальные горячие метки
                original_labels = batch["label"].to(device)

                # Создаем маску для сглаживания (выбираем случайные примеры)
                batch_size = original_labels.size(0)
                smooth_mask = torch.rand(batch_size, device=device) < config.smoothing_probability

                # Получаем сглаженные метки для выбранных примеров
                smoothed_labels = get_smoothed_labels(audio_paths, original_labels, df_ls, smooth_mask, config.emotion_columns,  device)

                # Комбинируем метки
                labels = torch.where(
                    smooth_mask.unsqueeze(1),  # Добавляем размерность для broadcast
                    smoothed_labels.to(device),
                    original_labels
        )
            # print(labels)
            texts = batch["text"]
            audio_pred = batch["audio_pred"].to(device)
            text_pred = batch["text_pred"].to(device)

            if "fusion" in model_name:
                logits = model((audio_pred, text_pred))
            elif "withprob" in model_name:
                logits = model(audio, texts, audio_pred, text_pred)
            else:
                logits = model(audio, texts)

            target = labels.argmax(dim=1)
            loss   = criterion(logits, target)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # Если scheduler - One cycle или с Hugging Face
            scheduler.step(batch_level=True)

            bs = audio.shape[0]
            total_loss += loss.item() * bs

            preds = logits.argmax(dim=1)
            total_preds.extend(preds.cpu().numpy().tolist())
            total_targets.extend(target.cpu().numpy().tolist())
            total_samples += bs

        train_loss = total_loss / total_samples
        uar_m = uar(total_targets, total_preds)
        war_m = war(total_targets, total_preds)
        mf1_m = mf1(total_targets, total_preds)
        wf1_m = wf1(total_targets, total_preds)
        mean_train = np.mean([uar_m, war_m, mf1_m, wf1_m])

        logging.info(
            f"[TRAIN] Loss={train_loss:.4f}, UAR={uar_m:.4f}, WAR={war_m:.4f}, "
            f"MF1={mf1_m:.4f}, WF1={wf1_m:.4f}, MEAN={mean_train:.4f}"
        )

        # --- DEV ---
        dev_means = []
        dev_metrics_by_dataset = []

        for name, loader in dev_loaders:
            d_loss, d_uar, d_war, d_mf1, d_wf1 = run_eval(
                model, loader, criterion, model_name, device
            )
            d_mean = np.mean([d_uar, d_war, d_mf1, d_wf1])
            dev_means.append(d_mean)

            if csv_writer:
                csv_writer.writerow(["dev", epoch, name, d_loss, d_uar, d_war, d_mf1, d_wf1, d_mean])

            logging.info(
                f"[DEV:{name}] Loss={d_loss:.4f}, UAR={d_uar:.4f}, WAR={d_war:.4f}, "
                f"MF1={d_mf1:.4f}, WF1={d_wf1:.4f}, MEAN={d_mean:.4f}"
            )

            dev_metrics_by_dataset.append({
                "name": name,
                "loss": d_loss,
                "uar": d_uar,
                "war": d_war,
                "mf1": d_mf1,
                "wf1": d_wf1,
                "mean": d_mean,
            })

        mean_dev = np.mean(dev_means)
        scheduler.step(mean_dev)

        # --- TEST ---
        test_metrics_by_dataset = []
        for name, loader in test_loaders:
            t_loss, t_uar, t_war, t_mf1, t_wf1 = run_eval(
                model, loader, criterion, model_name, device
            )
            t_mean = np.mean([t_uar, t_war, t_mf1, t_wf1])
            logging.info(
                f"[TEST:{name}] Loss={t_loss:.4f}, UAR={t_uar:.4f}, WAR={t_war:.4f}, "
                f"MF1={t_mf1:.4f}, WF1={t_wf1:.4f}, MEAN={t_mean:.4f}"
            )

            test_metrics_by_dataset.append({
                "name": name,
                "loss": t_loss,
                "uar": t_uar,
                "war": t_war,
                "mf1": t_mf1,
                "wf1": t_wf1,
                "mean": t_mean,
            })

            if csv_writer:
                csv_writer.writerow(["test", epoch, name, t_loss, t_uar, t_war, t_mf1, t_wf1, t_mean])


        if mean_dev > best_dev_mean:
            best_dev_mean = mean_dev
            patience_counter = 0
            best_dev_metrics = {
                "mean": mean_dev,
                "by_dataset": dev_metrics_by_dataset
            }
            best_test_metrics = {
                "mean": np.mean([ds["mean"] for ds in test_metrics_by_dataset]),
                "by_dataset": test_metrics_by_dataset
            }

            if config.save_best_model:
                dev_str = f"{mean_dev:.4f}".replace(".", "_")
                model_path = os.path.join(checkpoint_dir, f"best_model_dev_{dev_str}_epoch_{epoch}.pt")
                torch.save(model.state_dict(), model_path)
                logging.info(f"💾 Модель сохранена по лучшему dev (эпоха {epoch}): {model_path}")

        else:
            patience_counter += 1
            if patience_counter >= max_patience:
                logging.info(f"Early stopping: {max_patience} эпох без улучшения.")
                break

    logging.info("Тренировка завершена. Все split'ы обработаны!")

    if csv_file:
        csv_file.close()

    return best_dev_mean, best_dev_metrics, best_test_metrics