Spaces:
Running
Running
File size: 8,105 Bytes
960b1a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Проверка синтетического корпуса MELD-S:
• существует ли WAV-файл;
• правильные ли размеры аудио- и текст-эмбеддингов;
• совпадает ли итоговый размер фич-вектора с ожиданием.
Результат:
GOOD / BAD в консоль + CSV bad_synth_meld.csv (если нашли проблемы).
"""
from __future__ import annotations
import csv
import logging
import sys
import traceback
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Optional
import pandas as pd
import torch
import torchaudio
from tqdm import tqdm
# ----------------------------------------------------------------------
# >>>>>>>>> НАСТРОЙКИ ПОЛЬЗОВАТЕЛЯ (проверьте пути!) <<<<<<<<<<<
# ----------------------------------------------------------------------
USER_CONFIG = {
# пути к синтетике
"synthetic_path": r"E:/MELD_S",
"csv_name": "meld_s_train_labels.csv",
"wav_subdir": "wavs",
# модели / чекпойнты такие же, как в вашем config.toml
"audio_model_name": "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim",
"audio_ckpt": "best_audio_model_2.pt",
"text_model_name": "jinaai/jina-embeddings-v3",
"text_ckpt": "best_text_model.pth",
# общие параметры
"device": "cuda" if torch.cuda.is_available() else "cpu",
"sample_rate": 16000,
"num_emotions": 7, # anger, disgust, fear, happy, neutral, sad, surprise
}
# ----------------------------------------------------------------------
# импорт собственных экстракторов
# ----------------------------------------------------------------------
try:
from feature_extractor import (
PretrainedAudioEmbeddingExtractor,
PretrainedTextEmbeddingExtractor,
)
except ModuleNotFoundError:
try:
# если файл лежит в data_loading/
from data_loading.feature_extractor import (
PretrainedAudioEmbeddingExtractor,
PretrainedTextEmbeddingExtractor,
)
except ModuleNotFoundError as e:
sys.exit(
"❌ Не найден feature_extractor.py. "
"Убедитесь, что он в PYTHONPATH или лежит рядом со скриптом."
)
# ----------------------------------------------------------------------
# вспомогательные функции
# ----------------------------------------------------------------------
def build_audio_cfg() -> SimpleNamespace:
"""Готовим config-объект для PretrainedAudioEmbeddingExtractor."""
return SimpleNamespace(
audio_model_name=USER_CONFIG["audio_model_name"],
emb_device=USER_CONFIG["device"],
audio_pooling="mean", # как в тренировке
emb_normalize=False,
max_audio_frames=0,
audio_classifier_checkpoint=USER_CONFIG["audio_ckpt"],
sample_rate=USER_CONFIG["sample_rate"],
wav_length=4,
)
def build_text_cfg() -> SimpleNamespace:
"""Config для PretrainedTextEmbeddingExtractor."""
return SimpleNamespace(
text_model_name=USER_CONFIG["text_model_name"],
emb_device=USER_CONFIG["device"],
text_pooling="mean",
emb_normalize=False,
max_tokens=95,
text_classifier_checkpoint=USER_CONFIG["text_ckpt"],
)
def get_dims(audio_extractor, text_extractor) -> Dict[str, int]:
"""Возвращает фактические размеры эмбеддингов (audio_dim, text_dim)."""
sr = USER_CONFIG["sample_rate"]
with torch.no_grad():
dummy_wav = torch.zeros(1, sr)
_, a_emb = audio_extractor.extract(dummy_wav[0], sr)
audio_dim = a_emb[0].shape[-1]
_, t_emb = text_extractor.extract("dummy text")
text_dim = t_emb[0].shape[-1]
return {"audio_dim": audio_dim, "text_dim": text_dim}
def check_row(
row: pd.Series,
feats: Dict[str, object],
dims: Dict[str, int],
wav_dir: Path,
) -> Optional[str]:
"""
Возвращает None, если пример корректный, иначе строку-причину.
"""
video = row["video_name"]
wav_path = wav_dir / f"{video}.wav"
text = row.get("text", "")
try:
if not wav_path.exists():
return "file_missing"
# ---------- аудио ----------
wf, sr = torchaudio.load(str(wav_path))
if sr != USER_CONFIG["sample_rate"]:
wf = torchaudio.transforms.Resample(sr, USER_CONFIG["sample_rate"])(wf)
a_pred, a_emb = feats["audio"].extract(wf[0], USER_CONFIG["sample_rate"])
a_emb = a_emb[0]
if a_emb.shape[-1] != dims["audio_dim"]:
return f"audio_dim_{a_emb.shape[-1]}"
# ---------- текст ----------
t_pred, t_emb = feats["text"].extract(text)
t_emb = t_emb[0]
if t_emb.shape[-1] != dims["text_dim"]:
return f"text_dim_{t_emb.shape[-1]}"
# ---------- конкатенация ----------
full_vec = torch.cat(
[a_emb, t_emb, a_pred[0], t_pred[0]],
dim=-1,
)
expected_all = (
dims["audio_dim"]
+ dims["text_dim"]
+ 2 * USER_CONFIG["num_emotions"]
)
if full_vec.shape[-1] != expected_all:
return f"concat_dim_{full_vec.shape[-1]}"
except Exception as e:
logging.error(f"{video}: {traceback.format_exc(limit=2)}")
return "exception_" + e.__class__.__name__
return None
# ----------------------------------------------------------------------
# основной скрипт
# ----------------------------------------------------------------------
def main() -> None:
syn_root = Path(USER_CONFIG["synthetic_path"])
csv_path = syn_root / USER_CONFIG["csv_name"]
wav_dir = syn_root / USER_CONFIG["wav_subdir"]
if not csv_path.exists():
sys.exit(f"CSV не найден: {csv_path}")
if not wav_dir.exists():
sys.exit(f"WAV-директория не найдена: {wav_dir}")
# 1. экстракторы
audio_feat = PretrainedAudioEmbeddingExtractor(build_audio_cfg())
text_feat = PretrainedTextEmbeddingExtractor(build_text_cfg())
feats = {"audio": audio_feat, "text": text_feat}
# 2. реальные размерности
dims = get_dims(audio_feat, text_feat)
expected_total = (
dims["audio_dim"] + dims["text_dim"] + 2 * USER_CONFIG["num_emotions"]
)
print(
f"Audio dim = {dims['audio_dim']}, "
f"Text dim = {dims['text_dim']}, "
f"Expected concat = {expected_total}"
)
# 3. правим CSV
df = pd.read_csv(csv_path)
bad_rows: List[Dict[str, str]] = []
good_cnt = 0
for _, row in tqdm(df.iterrows(), total=len(df), desc="Checking"):
reason = check_row(row, feats, dims, wav_dir)
if reason:
bad_rows.append(
{
"video_name": row["video_name"],
"reason": reason,
"wav_path": str(wav_dir / f"{row['video_name']}.wav"),
}
)
else:
good_cnt += 1
# 4. отчёт
print("\n========== SUMMARY ==========")
print(f"✅ GOOD : {good_cnt}")
print(f"❌ BAD : {len(bad_rows)}")
if bad_rows:
out_csv = Path(__file__).with_name("bad_synth_meld.csv")
with open(out_csv, "w", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(
f, fieldnames=["video_name", "reason", "wav_path"]
)
writer.writeheader()
writer.writerows(bad_rows)
print(f"\nСписок проблемных примеров сохранён: {out_csv.resolve()}")
if __name__ == "__main__":
main()
|