Spaces:
Running
Running
File size: 10,029 Bytes
960b1a0 92da7ef 960b1a0 efc049f 960b1a0 efc049f 960b1a0 efc049f 960b1a0 e9c8cf5 efc049f 960b1a0 efc049f 960b1a0 efc049f 960b1a0 e9c8cf5 960b1a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import gradio as gr
import torchaudio
import pandas as pd
import torch.nn.functional as F
import whisper
import logging
import plotly.express as px
from utils.config_loader import ConfigLoader
from data_loading.feature_extractor import (
PretrainedAudioEmbeddingExtractor,
PretrainedTextEmbeddingExtractor
)
import chardet
import torch
from models.models import BiFormer
# DEVICE = torch.device('cuda')
DEVICE = torch.device('cpu')
# Configure logging
logging.basicConfig(level=logging.INFO)
# Constants with emojis and colors
LABEL_TO_EMOTION = {
0: 'π Anger',
1: 'π€’ Disgust',
2: 'π¨ Fear',
3: 'π Joy/Happiness',
4: 'π Neutral',
5: 'π’ Sadness',
6: 'π² Surprise/Enthusiasm'
}
EMOTION_COLORS = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEEAD', '#FF9999', '#D4A5A5']
emotion_color_map = {emotion: color for emotion, color in zip(LABEL_TO_EMOTION.values(), EMOTION_COLORS)}
TARGET_SAMPLE_RATE = 16000
def initialize_components(config_path='config.toml'):
"""Initialize configuration and models."""
config = ConfigLoader(config_path)
config.show_config()
model = BiFormer(
audio_dim=256,
text_dim=1024,
seg_len=95,
hidden_dim=256,
hidden_dim_gated=256,
num_transformer_heads=8,
num_graph_heads=2,
positional_encoding=False,
dropout=0.15,
mode='mean',
tr_layer_number=5,
out_features=256,
num_classes=7
)
checkpoint_path = "best_model_dev_0_5895_epoch_8.pt"
state = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(state)
model = model.to(DEVICE)
model.eval()
return (
PretrainedAudioEmbeddingExtractor(config),
PretrainedTextEmbeddingExtractor(config),
whisper.load_model("base"),
model
)
audio_extractor, text_extractor, whisper_model, bimodal_model = initialize_components()
def load_and_preprocess_audio(audio_path):
"""Load and preprocess audio to mono 16kHz format."""
try:
waveform, orig_sr = torchaudio.load(audio_path)
waveform = waveform.mean(dim=0, keepdim=False)
if orig_sr != TARGET_SAMPLE_RATE:
resampler = torchaudio.transforms.Resample(
orig_freq=orig_sr,
new_freq=TARGET_SAMPLE_RATE
)
waveform = resampler(waveform)
return waveform, TARGET_SAMPLE_RATE
except Exception as e:
logging.error(f"Audio loading failed: {e}")
raise
def transcribe_audio(audio_path):
"""Convert speech to text using Whisper."""
try:
result = whisper_model.transcribe(audio_path, fp16=False)
return result.get('text', '')
except Exception as e:
logging.error(f"Transcription failed: {e}")
return ""
def get_predictions(input_data, extractor, is_audio=False):
"""Generic prediction function for audio/text."""
try:
if is_audio:
pred, emb = extractor.extract(input_data, TARGET_SAMPLE_RATE)
else:
pred, emb = extractor.extract(input_data)
return F.softmax(pred, dim=-1)[0].tolist(), emb
except Exception as e:
logging.error(f"Prediction failed: {e}")
return [0.0] * len(LABEL_TO_EMOTION), None
def create_emotion_df(probabilities):
"""Create sorted emotion probability dataframe with percentages."""
df = pd.DataFrame({
'Emotion': list(LABEL_TO_EMOTION.values()),
'Probability': [round(p*100, 2) for p in probabilities]
})
return df
def create_plot(df, title):
"""Create Plotly bar chart with proper formatting."""
fig = px.bar(
df,
x='Emotion',
y='Probability',
title=title,
color='Emotion',
color_discrete_map=emotion_color_map
)
fig.update_layout(
xaxis=dict(tickangle=-45, tickfont=dict(size=12)),
yaxis=dict(title='Probability (%)'),
margin=dict(l=20, r=20, t=60, b=100),
height=400,
showlegend=False
)
return fig
def get_top_emotion(probabilities):
"""Return formatted top emotion with percentage."""
max_idx = probabilities.index(max(probabilities))
return f"{LABEL_TO_EMOTION[max_idx]} ({max(probabilities)*100:.1f}%)"
def process_audio(audio_path):
"""Main processing pipeline."""
try:
if not audio_path:
empty = create_emotion_df([0]*len(LABEL_TO_EMOTION))
return (
create_plot(empty, "π§ Audio Analysis"),
"No audio detected",
create_plot(empty, "π Text Analysis"),
create_plot(empty, "π€ Audio-Text Analysis"),
"π Please provide audio input"
)
# Audio processing
waveform, sr = load_and_preprocess_audio(audio_path)
audio_probs, audio_features = get_predictions(waveform, audio_extractor, is_audio=True)
audio_df = create_emotion_df(audio_probs)
# Text processing
text = transcribe_audio(audio_path)
text_probs, text_features = get_predictions(text, text_extractor) if text.strip() else [0.0]*len(LABEL_TO_EMOTION)
text_df = create_emotion_df(text_probs)
# Combined results
combined_probs = bimodal_model(audio_features, text_features)
combined_probs = F.softmax(combined_probs, dim=-1)[0].detach().cpu().numpy().tolist()
combined_df = create_emotion_df(combined_probs)
top_emotion = get_top_emotion(combined_probs)
return (
create_plot(audio_df, "π§ Audio Analysis"),
f"π£οΈ Transcription:\n{text}",
create_plot(text_df, "π Text Analysis"),
create_plot(combined_df, "π€ Audio-Text Analysis"),
f"## π Dominant Emotion: {top_emotion}"
)
except Exception as e:
logging.error(f"Processing failed: {e}")
error_df = create_emotion_df([0]*len(LABEL_TO_EMOTION))
return (
create_plot(error_df, "π§ Audio Analysis"),
"β Error processing audio",
create_plot(error_df, "π Text Analysis"),
create_plot(error_df, "π€ Audio-Text Analysis"),
"β οΈ Processing Error"
)
def create_app():
"""Build enhanced Gradio interface."""
with gr.Blocks(theme=gr.themes.Soft(), title="Emotion Detection from Speech") as demo:
gr.Markdown("# Intelligent system for Bilingual Bimodal Emotion Recognition (BiBiER)")
gr.Markdown("Analyze emotions in Russian and English speech through both audio characteristics and spoken content")
with gr.Row():
audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Record or Upload Audio",
format="wav",
interactive=True
)
with gr.Row():
top_emotion = gr.Markdown("## π Dominant Emotion: Waiting for input ...",
elem_classes="dominant-emotion")
with gr.Row():
with gr.Column():
audio_plot = gr.Plot(label="Audio Analysis")
with gr.Column():
text_plot = gr.Plot(label="Text Analysis")
with gr.Column():
combined_plot = gr.Plot(label="Audio-Text Analysis")
transcription = gr.Textbox(
label="π Transcription Results",
placeholder="Transcribed text will appear here...",
lines=3,
max_lines=6
)
audio_input.change(
process_audio,
inputs=audio_input,
outputs=[audio_plot, transcription, text_plot, combined_plot, top_emotion]
)
return demo
def create_authors():
df = pd.DataFrame({
"Name": ["Author", "Author"]
})
with gr.Blocks() as demo:
gr.Dataframe(df)
return demo
def create_reqs():
"""Create requirements tab with formatted data and explanations."""
# 1οΈβ£ Detect file encoding
with open('requirements.txt', 'rb') as f:
raw_data = f.read()
encoding = chardet.detect(raw_data)['encoding']
# 2οΈβ£ Parse requirements into library-version pairs
def parse_requirements(lines):
requirements = []
for line in lines:
line = line.strip()
if not line or line.startswith('#'):
continue # Skip empty lines and comments
parts = line.split('==')
library = parts[0].strip()
version = parts[1].strip() if len(parts) > 1 else 'latest'
requirements.append((library, version))
return requirements
# 3οΈβ£ Load and process requirements
with open('requirements.txt', 'r', encoding=encoding) as f:
requirements = parse_requirements(f.readlines())
# 4οΈβ£ Create structured data for display
df = pd.DataFrame({
"π¦ Library": [lib for lib, _ in requirements],
"π Recommended Version": [ver for _, ver in requirements]
})
# 5οΈβ£ Build interactive components
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π¦ Dependency Requirements")
gr.Markdown("""
## Essential Packages for Operation
These are the core libraries and versions needed to run the application successfully:
""")
gr.Dataframe(
df,
interactive=True,
wrap=True,
elem_id="requirements-table"
)
gr.Markdown("_Note: Versions marked 'latest' can use any compatible version_")
return demo
def create_demo():
app = create_app()
authors = create_authors()
reqs = create_reqs()
demo = gr.TabbedInterface(
[app, authors, reqs],
tab_names=["β App", "π Authors", "π Requirements"]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()
|