Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -693,283 +693,132 @@ def nutri_call():
|
|
693 |
|
694 |
|
695 |
|
696 |
-
from tabulate import tabulate
|
697 |
-
import numpy as np
|
698 |
-
|
699 |
-
# Глобальные параметры
|
700 |
-
TOTAL_NITROGEN = 120.0 # Общее количество азота
|
701 |
-
NO3_RATIO = 8.0 # Соотношение NO3:NH4
|
702 |
-
NH4_RATIO = 1.0 # Соотношение NH4:NO3
|
703 |
-
VOLUME_LITERS = 100 # Объем раствора
|
704 |
-
|
705 |
-
BASE_PROFILE = {
|
706 |
-
"P": 50, # Фосфор
|
707 |
-
"K": 210, # Калий
|
708 |
-
"Mg": 120, # Магний (высокий уровень)
|
709 |
-
"Ca": 150, # Кальций
|
710 |
-
"S": 50, # Сера
|
711 |
-
"N (NO3-)": 0, # Рассчитывается автоматически
|
712 |
-
"N (NH4+)": 0 # Рассчитывается автоматически
|
713 |
-
}
|
714 |
-
|
715 |
-
NUTRIENT_CONTENT_IN_FERTILIZERS = {
|
716 |
-
"Кальциевая селитра": {"N (NO3-)": 0.11863, "Ca": 0.16972},
|
717 |
-
"Калий азотнокислый": {"N (NO3-)": 0.136, "K": 0.382},
|
718 |
-
"Калий сернокислый": {"K": 0.44874, "S": 0.18401},
|
719 |
-
"Аммоний азотнокислый": {"N (NO3-)": 0.17499, "N (NH4+)": 0.17499},
|
720 |
-
"Сульфат магния": {"Mg": 0.09861, "S": 0.13010},
|
721 |
-
"Монофосфат калия": {"P": 0.218, "K": 0.275},
|
722 |
-
"Сульфат кальция": {"Ca": 0.23, "S": 0.186},
|
723 |
-
"Кольцевая селитра": {"N (NO3-)": 0.15, "Ca": 0.20} # Новое удобрение
|
724 |
-
}
|
725 |
-
|
726 |
-
EC_COEFFICIENTS = {
|
727 |
-
'P': 0.0012, 'K': 0.0018, 'Mg': 0.0015,
|
728 |
-
'Ca': 0.0016, 'S': 0.0014,
|
729 |
-
'N (NO3-)': 0.0017, 'N (NH4+)': 0.0019
|
730 |
-
}
|
731 |
-
|
732 |
-
nutrients_stencil = [
|
733 |
-
"N (NO3-)", "N (NH4+)", "P", "K", "Mg", "Ca", "S"
|
734 |
-
]
|
735 |
-
|
736 |
-
|
737 |
-
class Composition:
|
738 |
-
def __init__(self, name='', vector=None):
|
739 |
-
self.name = name
|
740 |
-
if vector is None:
|
741 |
-
self.vector = np.zeros(len(nutrients_stencil))
|
742 |
-
else:
|
743 |
-
if len(vector) != len(nutrients_stencil):
|
744 |
-
raise ValueError(f"Vector length ({len(vector)}) does not match nutrients stencil length ({len(nutrients_stencil)}).")
|
745 |
-
self.vector = np.array(vector)
|
746 |
-
|
747 |
-
@classmethod
|
748 |
-
def from_dict(cls, composition_dict):
|
749 |
-
if not composition_dict:
|
750 |
-
raise ValueError("Empty composition dictionary provided.")
|
751 |
-
name, nutrients_dict = tuple(composition_dict.items())[0]
|
752 |
-
vector = np.zeros(len(nutrients_stencil))
|
753 |
-
for i, nutrient in enumerate(nutrients_stencil):
|
754 |
-
if nutrient in nutrients_dict:
|
755 |
-
vector[i] = nutrients_dict[nutrient]
|
756 |
-
return cls(name, vector)
|
757 |
-
|
758 |
-
def __add__(self, other):
|
759 |
-
if not isinstance(other, Composition):
|
760 |
-
raise TypeError("Can only add Composition objects.")
|
761 |
-
name = f'{self.name} + {other.name}'
|
762 |
-
vector = self.vector + other.vector
|
763 |
-
return Composition(name, vector)
|
764 |
-
|
765 |
-
def table(self, sparse=True, ref=None, tablefmt='simple'):
|
766 |
-
description = f'Composition: {self.name}'
|
767 |
-
nutrients = np.array(nutrients_stencil)
|
768 |
-
vector = self.vector
|
769 |
-
if ref is not None:
|
770 |
-
if not isinstance(ref, Composition):
|
771 |
-
raise TypeError("Reference must be a Composition object.")
|
772 |
-
vector_ref = ref.vector
|
773 |
-
else:
|
774 |
-
vector_ref = np.zeros(len(nutrients_stencil))
|
775 |
-
if sparse:
|
776 |
-
mask_nonzero = (vector != 0) | (vector_ref != 0)
|
777 |
-
nutrients = nutrients[mask_nonzero]
|
778 |
-
vector = vector[mask_nonzero]
|
779 |
-
vector_ref = vector_ref[mask_nonzero]
|
780 |
-
table_dict = {
|
781 |
-
'Nutrient': nutrients,
|
782 |
-
'Ratio': vector,
|
783 |
-
'Amount mg/kg': 10**6 * vector,
|
784 |
-
}
|
785 |
-
if ref is not None:
|
786 |
-
description += f'\nReference: {ref.name}'
|
787 |
-
table_dict['Diff mg/kg'] = 10**6 * (vector - vector_ref)
|
788 |
-
table = tabulate(table_dict, headers='keys', tablefmt=tablefmt)
|
789 |
-
return '\n\n'.join((description, table))
|
790 |
-
|
791 |
-
|
792 |
class NutrientCalculator:
|
793 |
def __init__(self, volume_liters=1.0):
|
794 |
self.volume = volume_liters
|
795 |
self.target_profile = BASE_PROFILE.copy()
|
796 |
-
self.
|
797 |
-
|
798 |
-
|
799 |
-
}
|
800 |
self.total_ec = 0.0
|
801 |
-
self.
|
802 |
-
self.min_difference = float('inf')
|
803 |
-
self.max_recursion_depth = 5000 # Увеличиваем глубину поиска
|
804 |
-
self.current_depth = 0
|
805 |
|
806 |
-
|
807 |
total_parts = NO3_RATIO + NH4_RATIO
|
808 |
self.target_profile['N (NO3-)'] = TOTAL_NITROGEN * (NO3_RATIO / total_parts)
|
809 |
self.target_profile['N (NH4+)'] = TOTAL_NITROGEN * (NH4_RATIO / total_parts)
|
810 |
|
811 |
-
# Целевой п��офиль как объект Composition
|
812 |
-
self.target_composition = Composition('Target Profile', list(self.target_profile.values()))
|
813 |
-
|
814 |
def calculate(self):
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
# Попытка точного добора после основного подбора
|
826 |
-
self._post_optimize()
|
827 |
-
|
828 |
-
return self.best_solution or {"error": "Не удалось найти подходящую комбинацию"}
|
829 |
-
|
830 |
-
except Exception as e:
|
831 |
-
print(f"Ошибка при расчёте: {str(e)}")
|
832 |
-
raise
|
833 |
-
|
834 |
-
def _backtrack_search(self, fertilizer_index=0, step=1.0):
|
835 |
-
self.current_depth += 1
|
836 |
-
if self.current_depth > self.max_recursion_depth:
|
837 |
-
return False
|
838 |
-
|
839 |
-
# Текущий профиль как объект Composition
|
840 |
-
current_composition = Composition('Current Profile', list(self.actual_profile.values()))
|
841 |
-
current_diff = self._calculate_difference(current_composition)
|
842 |
-
|
843 |
-
if current_diff < self.min_difference:
|
844 |
-
self.min_difference = current_diff
|
845 |
-
self.best_solution = {
|
846 |
-
"results": self._copy_results(),
|
847 |
-
"actual_profile": self.actual_profile.copy(),
|
848 |
-
"total_ec": self.total_ec,
|
849 |
-
"difference": current_diff
|
850 |
-
}
|
851 |
-
|
852 |
-
if current_diff < 1.0: # Допустимая погрешность
|
853 |
-
return True
|
854 |
-
|
855 |
-
# Пробуем добавлять удобрения с текущего индекса
|
856 |
-
for i in range(fertilizer_index, len(self.fertilizers)):
|
857 |
-
fert_name = list(self.fertilizers.keys())[i]
|
858 |
-
fert_composition = self.fertilizers[fert_name]
|
859 |
|
860 |
-
|
861 |
-
|
862 |
-
|
|
|
863 |
|
864 |
-
|
865 |
-
|
|
|
|
|
866 |
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
873 |
|
874 |
-
|
875 |
-
|
876 |
-
if self._backtrack_search(i, step / 2):
|
877 |
-
return True
|
878 |
-
|
879 |
-
return False
|
880 |
-
|
881 |
-
def _can_apply_fertilizer(self, fert_composition):
|
882 |
-
"""Проверяет, можно ли применить удобрение без перебора"""
|
883 |
-
for element, content in zip(nutrients_stencil, fert_composition.vector):
|
884 |
-
added_ppm = (1 * content * 1000) / self.volume
|
885 |
-
if self.actual_profile[element] + added_ppm > self.target_profile[element] * 1.03: # Разрешаем перерасход на 3%
|
886 |
-
return False
|
887 |
-
return True
|
888 |
-
|
889 |
-
def _apply_fertilizer(self, fert_name, amount):
|
890 |
-
"""Добавляет указанное количество удобрения"""
|
891 |
-
fert_composition = self.fertilizers[fert_name]
|
892 |
-
scaled_composition = Composition(fert_composition.name, fert_composition.vector * amount)
|
893 |
|
|
|
894 |
if fert_name not in self.results:
|
895 |
self.results[fert_name] = {
|
896 |
'граммы': 0.0,
|
897 |
-
'
|
898 |
-
'вклад в EC': 0.0
|
899 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
900 |
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
self.
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
if fert_name in self.results:
|
914 |
-
self.results[fert_name]['граммы'] -= amount
|
915 |
-
self.results[fert_name]['миллиграммы'] -= int(amount * 1000)
|
916 |
-
|
917 |
-
for i, nutrient in enumerate(nutrients_stencil):
|
918 |
-
removed_ppm = scaled_composition.vector[i] * 1000 / self.volume
|
919 |
-
self.actual_profile[nutrient] -= removed_ppm
|
920 |
-
|
921 |
-
if self.results[fert_name]['граммы'] <= 0.001:
|
922 |
-
del self.results[fert_name]
|
923 |
-
|
924 |
-
def _calculate_difference(self, current_composition):
|
925 |
-
"""Вычисляет общее отклонение от целевого профиля с учетом весов"""
|
926 |
-
diff_vector = self.target_composition.vector - current_composition.vector
|
927 |
-
weights = np.array([1.5 if el in ['K', 'S', 'Mg'] else 1.0 for el in nutrients_stencil])
|
928 |
-
return np.sum(np.abs(diff_vector) * weights)
|
929 |
|
930 |
-
def
|
931 |
-
|
|
|
|
|
|
|
|
|
|
|
932 |
return {
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
for fert_name, data in self.results.items()
|
939 |
}
|
940 |
|
941 |
-
def
|
942 |
-
|
943 |
-
for
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
report = actual_composition.table(sparse=True, ref=self.target_composition)
|
955 |
-
return report
|
956 |
-
except Exception as e:
|
957 |
-
print(f"Ошибка при выводе отчёта: {str(e)}")
|
958 |
-
raise
|
959 |
-
|
960 |
-
|
961 |
-
if __name__ == "__main__":
|
962 |
-
try:
|
963 |
-
calculator = NutrientCalculator(volume_liters=VOLUME_LITERS)
|
964 |
-
solution = calculator.calculate()
|
965 |
-
if solution:
|
966 |
-
print(calculator.generate_report())
|
967 |
-
else:
|
968 |
-
print("Решение не найдено.")
|
969 |
-
except Exception as e:
|
970 |
-
print(f"Критическая ошибка: {str(e)}")
|
971 |
-
|
972 |
-
|
973 |
|
974 |
|
975 |
|
|
|
693 |
|
694 |
|
695 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
696 |
class NutrientCalculator:
|
697 |
def __init__(self, volume_liters=1.0):
|
698 |
self.volume = volume_liters
|
699 |
self.target_profile = BASE_PROFILE.copy()
|
700 |
+
self._init_nitrogen()
|
701 |
+
self.fertilizers = NUTRIENT_CONTENT_IN_FERTILIZERS
|
702 |
+
self.results = {}
|
703 |
+
self.actual_profile = {k: 0.0 for k in self.target_profile}
|
704 |
self.total_ec = 0.0
|
705 |
+
self.tolerance = 0.5 # Допустимое отклонение в ppm
|
|
|
|
|
|
|
706 |
|
707 |
+
def _init_nitrogen(self):
|
708 |
total_parts = NO3_RATIO + NH4_RATIO
|
709 |
self.target_profile['N (NO3-)'] = TOTAL_NITROGEN * (NO3_RATIO / total_parts)
|
710 |
self.target_profile['N (NH4+)'] = TOTAL_NITROGEN * (NH4_RATIO / total_parts)
|
711 |
|
|
|
|
|
|
|
712 |
def calculate(self):
|
713 |
+
# Основные элементы в порядке приоритета
|
714 |
+
elements_order = ['Ca', 'N (NH4+)', 'P', 'Mg', 'N (NO3-)', 'K', 'S']
|
715 |
+
|
716 |
+
for element in elements_order:
|
717 |
+
self._balance_element(element)
|
718 |
+
|
719 |
+
# Финальная тонкая настройка
|
720 |
+
self._fine_tuning()
|
721 |
+
|
722 |
+
return self._prepare_results()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
723 |
|
724 |
+
def _balance_element(self, element):
|
725 |
+
deficit = self.target_profile[element] - self.actual_profile[element]
|
726 |
+
if deficit <= self.tolerance:
|
727 |
+
return
|
728 |
|
729 |
+
# Выбираем лучшее удобрение для элемента
|
730 |
+
best_fert = self._find_best_fertilizer(element)
|
731 |
+
if not best_fert:
|
732 |
+
return
|
733 |
|
734 |
+
# Рассчитываем необходимое количество
|
735 |
+
content = self.fertilizers[best_fert][element]
|
736 |
+
grams = (deficit * self.volume) / (content * 1000)
|
737 |
+
|
738 |
+
# Вносим с учетом других элементов в удобрении
|
739 |
+
self._apply_fertilizer(best_fert, grams)
|
740 |
+
|
741 |
+
def _find_best_fertilizer(self, element):
|
742 |
+
candidates = []
|
743 |
+
for fert, contents in self.fertilizers.items():
|
744 |
+
if element in contents:
|
745 |
+
# Оцениваем "побочные" элементы
|
746 |
+
side_effects = sum(
|
747 |
+
max(0, self.target_profile[e] - self.actual_profile[e])
|
748 |
+
for e in contents if e != element
|
749 |
+
)
|
750 |
+
candidates.append((fert, side_effects))
|
751 |
+
|
752 |
+
if not candidates:
|
753 |
+
return None
|
754 |
|
755 |
+
# Выбираем удобрение с минимальными побочными эффектами
|
756 |
+
return min(candidates, key=lambda x: x[1])[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
757 |
|
758 |
+
def _apply_fertilizer(self, fert_name, grams):
|
759 |
if fert_name not in self.results:
|
760 |
self.results[fert_name] = {
|
761 |
'граммы': 0.0,
|
762 |
+
'вклад': {e: 0.0 for e in self.fertilizers[fert_name]}
|
|
|
763 |
}
|
764 |
+
|
765 |
+
self.results[fert_name]['граммы'] += grams
|
766 |
+
|
767 |
+
for element, content in self.fertilizers[fert_name].items():
|
768 |
+
added_ppm = (grams * content * 1000) / self.volume
|
769 |
+
self.actual_profile[element] += added_ppm
|
770 |
+
self.results[fert_name]['вклад'][element] += added_ppm
|
771 |
+
self.total_ec += added_ppm * EC_COEFFICIENTS.get(element, 0.0015)
|
772 |
+
|
773 |
+
def _fine_tuning(self):
|
774 |
+
# Тонкая подстройка малыми шагами (0.1 грамма)
|
775 |
+
for _ in range(100): # Максимум 100 итераций
|
776 |
+
worst_element = self._get_worst_balanced()
|
777 |
+
if not worst_element:
|
778 |
+
break
|
779 |
+
|
780 |
+
self._balance_element(worst_element)
|
781 |
|
782 |
+
def _get_worst_balanced(self):
|
783 |
+
worst_element = None
|
784 |
+
max_diff = 0
|
785 |
+
|
786 |
+
for element in self.target_profile:
|
787 |
+
diff = abs(self.target_profile[element] - self.actual_profile[element])
|
788 |
+
if diff > max_diff and diff > self.tolerance:
|
789 |
+
max_diff = diff
|
790 |
+
worst_element = element
|
791 |
+
|
792 |
+
return worst_element
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
793 |
|
794 |
+
def _prepare_results(self):
|
795 |
+
deficits = {
|
796 |
+
k: round(self.target_profile[k] - self.actual_profile[k], 3)
|
797 |
+
for k in self.target_profile
|
798 |
+
if abs(self.target_profile[k] - self.actual_profile[k]) > self.tolerance
|
799 |
+
}
|
800 |
+
|
801 |
return {
|
802 |
+
"actual_profile": {k: round(v, 3) for k, v in self.actual_profile.items()},
|
803 |
+
"fertilizers": self._format_fertilizers(),
|
804 |
+
"total_ec": round(self.total_ec, 3),
|
805 |
+
"total_ppm": round(sum(self.actual_profile.values()), 3),
|
806 |
+
"deficits": deficits
|
|
|
807 |
}
|
808 |
|
809 |
+
def _format_fertilizers(self):
|
810 |
+
formatted = {}
|
811 |
+
for name, data in self.results.items():
|
812 |
+
formatted[name] = {
|
813 |
+
'граммы': round(data['граммы'], 3),
|
814 |
+
'миллиграммы': int(data['граммы'] * 1000),
|
815 |
+
'вклад в EC': round(sum(
|
816 |
+
v * EC_COEFFICIENTS.get(k, 0.0015)
|
817 |
+
for k, v in data['вклад'].items()
|
818 |
+
), 3),
|
819 |
+
'добавит': [f"{k}: {round(v, 3)} ppm" for k, v in data['вклад'].items()]
|
820 |
+
}
|
821 |
+
return formatted
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
|
823 |
|
824 |
|