Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -690,6 +690,39 @@ def nutri_call():
|
|
690 |
|
691 |
|
692 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
693 |
from tabulate import tabulate
|
694 |
|
695 |
# Константы
|
@@ -722,15 +755,15 @@ NUTRIENT_CONTENT_IN_FERTILIZERS = {
|
|
722 |
}
|
723 |
|
724 |
class NutrientCalculator:
|
725 |
-
def __init__(self, volume_liters
|
726 |
self.volume = volume_liters
|
727 |
-
self.results
|
728 |
self.target_profile = BASE_PROFILE.copy()
|
729 |
self.actual_profile = {k: 0.0 for k in BASE_PROFILE}
|
730 |
self.fertilizers = NUTRIENT_CONTENT_IN_FERTILIZERS
|
731 |
self.total_ec = 0.0
|
732 |
|
733 |
-
#
|
734 |
total_parts = NO3_RATIO + NH4_RATIO
|
735 |
self.target_profile['N (NO3-)'] = TOTAL_NITROGEN * (NO3_RATIO / total_parts)
|
736 |
self.target_profile['N (NH4+)'] = TOTAL_NITROGEN * (NH4_RATIO / total_parts)
|
@@ -739,14 +772,7 @@ class NutrientCalculator:
|
|
739 |
"NH4+": self.target_profile['N (NH4+)']
|
740 |
}
|
741 |
|
742 |
-
|
743 |
-
self.compensation_weights = {
|
744 |
-
'KNO3': 0.5, # Вес калийной селитры (0-1)
|
745 |
-
'CaNO3': 0.3, # Вес кальциевой селитры (0-1)
|
746 |
-
'K2SO4': 0.2 # Вес сульфата калия (0-1)
|
747 |
-
}
|
748 |
-
|
749 |
-
def _label(self, element: str) -> str:
|
750 |
"""Форматирование названий элементов для вывода"""
|
751 |
labels = {
|
752 |
'N (NO3-)': 'NO3',
|
@@ -754,48 +780,161 @@ class NutrientCalculator:
|
|
754 |
}
|
755 |
return labels.get(element, element)
|
756 |
|
757 |
-
def
|
758 |
-
"""Установка весов для компенсации элементов"""
|
759 |
-
total = kno3_weight + cano3_weight + k2so4_weight
|
760 |
-
self.compensation_weights = {
|
761 |
-
'KNO3': kno3_weight / total,
|
762 |
-
'CaNO3': cano3_weight / total,
|
763 |
-
'K2SO4': k2so4_weight / total
|
764 |
-
}
|
765 |
-
|
766 |
-
def calculate(self) -> Dict[str, Any]:
|
767 |
-
"""Основной метод расчета с новой логикой"""
|
768 |
try:
|
769 |
-
# 1. Вносим Mg и S
|
770 |
self._apply("Сульфат магния", "Mg", self.target_profile['Mg'])
|
|
|
|
|
|
|
771 |
|
772 |
-
|
773 |
-
self.
|
774 |
|
775 |
-
|
776 |
-
|
777 |
-
if ca_needed > 0.1:
|
778 |
-
self._apply("Кальциевая селитра", "Ca", ca_needed)
|
779 |
|
780 |
-
|
781 |
-
p_needed = self.target_profile['P'] - self.actual_profile['P']
|
782 |
-
if p_needed > 0.1:
|
783 |
-
self._apply("Монофосфат калия", "P", p_needed)
|
784 |
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
self._apply("Калий сернокислый", "K", k_needed)
|
789 |
|
790 |
return self.results
|
791 |
-
|
792 |
except Exception as e:
|
793 |
print(f"Ошибка при расчёте: {str(e)}")
|
794 |
raise
|
795 |
|
796 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
797 |
|
798 |
-
def round_floats(obj
|
799 |
"""Рекурсивно округляет все float значения в структуре данных"""
|
800 |
if isinstance(obj, float):
|
801 |
return round(obj, ndigits)
|
@@ -898,7 +1037,7 @@ def handle_calculation():
|
|
898 |
if 'fertilizers' in rounded_response:
|
899 |
for fert in rounded_response['fertilizers'].values():
|
900 |
if 'миллиграммы' in fert:
|
901 |
-
fert['миллиграммы'] = int(round(fert['
|
902 |
|
903 |
return jsonify(rounded_response)
|
904 |
|
|
|
690 |
|
691 |
|
692 |
|
693 |
+
from tabulate import tabulate
|
694 |
+
|
695 |
+
# Константы
|
696 |
+
TOTAL_NITROGEN = 125.000
|
697 |
+
NO3_RATIO = 8.25
|
698 |
+
NH4_RATIO = 1.00
|
699 |
+
VOLUME_LITERS = 100
|
700 |
+
|
701 |
+
# Коэффициенты электропроводности
|
702 |
+
EC_COEFFICIENTS = {
|
703 |
+
'P': 0.0012, 'K': 0.0018, 'Mg': 0.0015,
|
704 |
+
'Ca': 0.0016, 'S': 0.0014,
|
705 |
+
'N (NO3-)': 0.0017, 'N (NH4+)': 0.0019
|
706 |
+
}
|
707 |
+
|
708 |
+
# Целевые значения
|
709 |
+
BASE_PROFILE = {
|
710 |
+
'P': 31.000, 'K': 210.000, 'Mg': 24.000,
|
711 |
+
'Ca': 84.000, 'S': 56.439,
|
712 |
+
'N (NO3-)': 0, 'N (NH4+)': 0
|
713 |
+
}
|
714 |
+
|
715 |
+
NUTRIENT_CONTENT_IN_FERTILIZERS = {
|
716 |
+
"Кальциевая селитра": {"N (NO3-)": 0.11863, "Ca": 0.16972},
|
717 |
+
"Калий азотнокислый": {"N (NO3-)": 0.136, "K": 0.382},
|
718 |
+
"Калий сернокислый": {"K": 0.44874, "S": 0.18401},
|
719 |
+
"Аммоний азотнокислый": {"N (NO3-)": 0.17499, "N (NH4+)": 0.17499},
|
720 |
+
"Сульфат магния": {"Mg": 0.09861, "S": 0.13010},
|
721 |
+
"Монофосфат калия": {"P": 0.218, "K": 0.275}
|
722 |
+
}
|
723 |
+
|
724 |
+
|
725 |
+
|
726 |
from tabulate import tabulate
|
727 |
|
728 |
# Константы
|
|
|
755 |
}
|
756 |
|
757 |
class NutrientCalculator:
|
758 |
+
def __init__(self, volume_liters=1.0):
|
759 |
self.volume = volume_liters
|
760 |
+
self.results = {}
|
761 |
self.target_profile = BASE_PROFILE.copy()
|
762 |
self.actual_profile = {k: 0.0 for k in BASE_PROFILE}
|
763 |
self.fertilizers = NUTRIENT_CONTENT_IN_FERTILIZERS
|
764 |
self.total_ec = 0.0
|
765 |
|
766 |
+
# Расчёт азота
|
767 |
total_parts = NO3_RATIO + NH4_RATIO
|
768 |
self.target_profile['N (NO3-)'] = TOTAL_NITROGEN * (NO3_RATIO / total_parts)
|
769 |
self.target_profile['N (NH4+)'] = TOTAL_NITROGEN * (NH4_RATIO / total_parts)
|
|
|
772 |
"NH4+": self.target_profile['N (NH4+)']
|
773 |
}
|
774 |
|
775 |
+
def _label(self, element):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
"""Форматирование названий элементов для вывода"""
|
777 |
labels = {
|
778 |
'N (NO3-)': 'NO3',
|
|
|
780 |
}
|
781 |
return labels.get(element, element)
|
782 |
|
783 |
+
def calculate(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
try:
|
|
|
785 |
self._apply("Сульфат магния", "Mg", self.target_profile['Mg'])
|
786 |
+
self._apply("Кальциевая селитра", "Ca", self.target_profile['Ca'])
|
787 |
+
self._apply("Монофосфат калия", "P", self.target_profile['P'])
|
788 |
+
self._apply("Аммоний азотнокислый", "N (NH4+)", self.target_profile['N (NH4+)'])
|
789 |
|
790 |
+
current_no3 = self.actual_profile['N (NO3-)']
|
791 |
+
no3_needed = self.target_profile['N (NO3-)'] - current_no3
|
792 |
|
793 |
+
if no3_needed > 0.1:
|
794 |
+
self._apply("Калий азотнокислый", "N (NO3-)", no3_needed)
|
|
|
|
|
795 |
|
796 |
+
self._apply_k_sulfate()
|
|
|
|
|
|
|
797 |
|
798 |
+
k_deficit = self.target_profile['K'] - self.actual_profile['K']
|
799 |
+
if k_deficit > 0.1:
|
800 |
+
self._apply("Калий азотнокислый", "K", k_deficit)
|
|
|
801 |
|
802 |
return self.results
|
|
|
803 |
except Exception as e:
|
804 |
print(f"Ошибка при расчёте: {str(e)}")
|
805 |
raise
|
806 |
|
807 |
+
def _apply(self, fert_name, main_element, required_ppm):
|
808 |
+
if required_ppm <= 0:
|
809 |
+
return
|
810 |
+
|
811 |
+
try:
|
812 |
+
content = self.fertilizers[fert_name][main_element]
|
813 |
+
grams = (required_ppm * self.volume) / (content * 1000)
|
814 |
+
|
815 |
+
if fert_name not in self.results:
|
816 |
+
result = {
|
817 |
+
'граммы': 0.0,
|
818 |
+
'миллиграммы': 0,
|
819 |
+
'вклад в EC': 0.0
|
820 |
+
}
|
821 |
+
for element in self.fertilizers[fert_name]:
|
822 |
+
result[f'внесет {self._label(element)}'] = 0.0
|
823 |
+
self.results[fert_name] = result
|
824 |
+
|
825 |
+
self.results[fert_name]['граммы'] += grams
|
826 |
+
self.results[fert_name]['миллиграммы'] += int(grams * 1000)
|
827 |
+
|
828 |
+
fert_ec = 0.0
|
829 |
+
for element, percent in self.fertilizers[fert_name].items():
|
830 |
+
added_ppm = (grams * percent * 1000) / self.volume
|
831 |
+
self.results[fert_name][f'внесет {self._label(element)}'] += added_ppm
|
832 |
+
self.actual_profile[element] += added_ppm
|
833 |
+
fert_ec += added_ppm * EC_COEFFICIENTS.get(element, 0.0015)
|
834 |
+
|
835 |
+
self.results[fert_name]['вклад в EC'] += fert_ec
|
836 |
+
self.total_ec += fert_ec
|
837 |
+
except KeyError as e:
|
838 |
+
print(f"Ошибка: отсутствует элемент {str(e)} в удобрении {fert_name}")
|
839 |
+
raise
|
840 |
+
|
841 |
+
def _apply_k_sulfate(self):
|
842 |
+
fert = "Калий сернокислый"
|
843 |
+
k_def = self.target_profile['K'] - self.actual_profile['K']
|
844 |
+
s_def = self.target_profile['S'] - self.actual_profile['S']
|
845 |
+
|
846 |
+
if k_def <= 0 and s_def <= 0:
|
847 |
+
return
|
848 |
+
|
849 |
+
try:
|
850 |
+
if s_def > 0.1:
|
851 |
+
s_content = self.fertilizers[fert]["S"]
|
852 |
+
grams_s = (s_def * self.volume) / (s_content * 1000)
|
853 |
+
|
854 |
+
k_content = self.fertilizers[fert]["K"]
|
855 |
+
k_from_s = (grams_s * k_content * 1000) / self.volume
|
856 |
+
|
857 |
+
if k_from_s > k_def and k_def > 0.1:
|
858 |
+
grams = (k_def * self.volume) / (k_content * 1000)
|
859 |
+
else:
|
860 |
+
grams = grams_s
|
861 |
+
|
862 |
+
self._apply(fert, "S", s_def)
|
863 |
+
except Exception as e:
|
864 |
+
print(f"Ошибка при расчёте сульфата калия: {str(e)}")
|
865 |
+
raise
|
866 |
+
|
867 |
+
def calculate_ec(self):
|
868 |
+
return round(self.total_ec, 2)
|
869 |
+
|
870 |
+
def print_report(self):
|
871 |
+
try:
|
872 |
+
print("\n" + "="*60)
|
873 |
+
print("ПРОФИЛЬ ПИТАТЕЛЬНОГО РАСТВОРА (ИТОГО):")
|
874 |
+
print("="*60)
|
875 |
+
table = [[el, round(self.actual_profile[el], 1)] for el in self.actual_profile]
|
876 |
+
print(tabulate(table, headers=["Элемент", "ppm"]))
|
877 |
+
|
878 |
+
print("\nИсходный расчёт азота:")
|
879 |
+
for form, val in self.initial_n_profile.items():
|
880 |
+
print(f" {form}: {round(val, 1)} ppm")
|
881 |
+
|
882 |
+
print("\n" + "="*60)
|
883 |
+
print(f"РАСЧЕТ ДЛЯ {self.volume} ЛИТРОВ РАСТВОРА")
|
884 |
+
print("="*60)
|
885 |
+
print(f"Общая концентрация: {round(sum(self.actual_profile.values()), 1)} ppm")
|
886 |
+
print(f"EC: {self.calculate_ec()} mS/cm")
|
887 |
+
|
888 |
+
print("\nРЕКОМЕНДУЕМЫЕ УДОБРЕНИЯ:")
|
889 |
+
fert_table = []
|
890 |
+
for fert, data in self.results.items():
|
891 |
+
adds = [f"+{k}: {v:.1f} ppm" for k, v in data.items() if k.startswith('внесет')]
|
892 |
+
fert_table.append([
|
893 |
+
fert,
|
894 |
+
round(data['граммы'], 3),
|
895 |
+
data['миллиграммы'],
|
896 |
+
round(data['вклад в EC'], 3),
|
897 |
+
"\n".join(adds)
|
898 |
+
])
|
899 |
+
print(tabulate(fert_table,
|
900 |
+
headers=["Удобрение", "Граммы", "Миллиграммы", "EC (мСм/см)", "Добавит"]))
|
901 |
+
|
902 |
+
print("\nОСТАТОЧНЫЙ ДЕФИЦИТ:")
|
903 |
+
deficit = {
|
904 |
+
k: round(self.target_profile[k] - self.actual_profile[k], 1)
|
905 |
+
for k in self.target_profile
|
906 |
+
if abs(self.target_profile[k] - self.actual_profile[k]) > 0.1
|
907 |
+
}
|
908 |
+
if deficit:
|
909 |
+
for el, val in deficit.items():
|
910 |
+
print(f" {el}: {val} ppm")
|
911 |
+
else:
|
912 |
+
print(" ��се элементы покрыты полностью")
|
913 |
+
except Exception as e:
|
914 |
+
print(f"Ошибка при выводе отчёта: {str(e)}")
|
915 |
+
raise
|
916 |
+
|
917 |
+
if __name__ == "__main__":
|
918 |
+
try:
|
919 |
+
calculator = NutrientCalculator(volume_liters=VOLUME_LITERS)
|
920 |
+
calculator.calculate()
|
921 |
+
calculator.print_report() # Правильный вызов метода класса
|
922 |
+
except Exception as e:
|
923 |
+
print(f"Критическая ошибка: {str(e)}")
|
924 |
+
|
925 |
+
|
926 |
+
|
927 |
+
|
928 |
+
|
929 |
+
|
930 |
+
|
931 |
+
|
932 |
+
|
933 |
+
|
934 |
+
|
935 |
+
from flask import request, jsonify
|
936 |
|
937 |
+
def round_floats(obj, ndigits=3):
|
938 |
"""Рекурсивно округляет все float значения в структуре данных"""
|
939 |
if isinstance(obj, float):
|
940 |
return round(obj, ndigits)
|
|
|
1037 |
if 'fertilizers' in rounded_response:
|
1038 |
for fert in rounded_response['fertilizers'].values():
|
1039 |
if 'миллиграммы' in fert:
|
1040 |
+
fert['миллиграммы'] = int(round(fert['миллиграммы']))
|
1041 |
|
1042 |
return jsonify(rounded_response)
|
1043 |
|