Spaces:
Sleeping
Sleeping
File size: 3,461 Bytes
f2169e5 e988eb0 9f2d402 b5b9af8 e988eb0 b5b9af8 9f2d402 0eefba5 9f2d402 b5b9af8 95b2ec1 e988eb0 9f2d402 e988eb0 95b2ec1 9f2d402 e988eb0 b5b9af8 9f2d402 95b2ec1 e988eb0 9f2d402 e988eb0 9f2d402 e988eb0 9f2d402 e988eb0 9f2d402 e988eb0 9f2d402 e988eb0 9f2d402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import time
from datetime import datetime
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# -- SETUP --
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
@st.cache_resource
def load_pipeline():
model_id = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
return pipeline("text-generation", model=model, tokenizer=tokenizer)
generator = load_pipeline()
if "history" not in st.session_state:
st.session_state.history = []
st.session_state.summary = ""
# -- UTILS --
TRIGGER_PHRASES = ["kill myself", "end it all", "suicide", "not worth living", "can't go on"]
def is_high_risk(text):
return any(phrase in text.lower() for phrase in TRIGGER_PHRASES)
def get_reply(prompt, max_new_tokens=150, temperature=0.7):
output = generator(prompt, max_new_tokens=max_new_tokens, temperature=temperature)[0]["generated_text"]
return output.split("AI:")[-1].strip() if "AI:" in output else output.strip()
# -- STYLING --
st.markdown("""
<style>
body {
background-color: #111827;
color: #f3f4f6;
}
.stTextInput > div > div > input {
color: #f3f4f6;
}
</style>
""", unsafe_allow_html=True)
# -- HEADER --
st.title("π§ TARS.help")
st.markdown("### A minimal AI that listens, reflects, and replies.")
st.markdown(f"ποΈ {datetime.now().strftime('%B %d, %Y')} | {len(st.session_state.history)//2} exchanges")
# -- USER INPUT --
user_input = st.text_input("How are you feeling today?", placeholder="Start typing...")
# -- MAIN CHAT FLOW --
if user_input:
context = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history[-4:]])
with st.spinner("TARS is reflecting..."):
time.sleep(1)
if is_high_risk(user_input):
response = "I'm really sorry you're feeling this way. You're not alone β please talk to someone you trust or a mental health professional. π"
else:
prompt = f"You are a compassionate AI therapist.\n{context}\nUser: {user_input}\nAI:"
response = get_reply(prompt)
timestamp = datetime.now().strftime("%H:%M")
st.session_state.history.append(("π§ You", user_input, timestamp))
st.session_state.history.append(("π€ TARS", response, timestamp))
# -- DISPLAY CHAT --
st.markdown("## π¨οΈ Session")
for speaker, msg, time in st.session_state.history:
st.markdown(f"**{speaker} [{time}]:** {msg}")
# -- SUMMARY GENERATION --
if st.button("π§Ύ Generate Session Summary"):
convo = "\n".join([f"{s}: {m}" for s, m, _ in st.session_state.history])
summary_prompt = f"Summarize the tone and content of this therapy session in 3 thoughtful sentences:\n{convo}\nSummary:"
try:
summary = get_reply(summary_prompt, max_new_tokens=200, temperature=0.5)
st.session_state.summary = summary
except Exception as e:
st.error("β Summary generation failed.")
st.exception(e)
# -- DISPLAY SUMMARY --
if st.session_state.summary:
st.markdown("### π§ Session Note")
st.markdown(st.session_state.summary)
st.download_button("π₯ Download Summary", st.session_state.summary, file_name="tars_session.txt")
# -- FOOTER --
st.markdown("---")
st.caption("TARS is not a therapist, but a quiet assistant that reflects with you.")
|