Spaces:
Build error
Build error
File size: 16,655 Bytes
c3e56e6 5e1a778 c3e56e6 5e1a778 c3e56e6 5e1a778 c3e56e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import os
import sys
import gradio as gr
import torch
import tempfile
from pathlib import Path
from huggingface_hub import snapshot_download, hf_hub_download
# 添加模型目录到系统路径
sys.path.append(".")
# 导入Vevo工具类
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio
# 模型配置常量
REPO_ID = "amphion/Vevo"
CACHE_DIR = "./ckpts/Vevo"
class VevoGradioApp:
def __init__(self):
# 设备设置
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.pipelines = {}
# 配置文件路径
self.config_paths = {
"vq32tovq8192": "./models/vc/vevo/config/Vq32ToVq8192.json",
"vq8192tomels": "./models/vc/vevo/config/Vq8192ToMels.json",
"phonetovq8192": "./models/vc/vevo/config/PhoneToVq8192.json",
"vocoder": "./models/vc/vevo/config/Vocoder.json"
}
# 确保配置文件存在
self.download_configs()
def download_configs(self):
"""下载必要的配置文件"""
os.makedirs("./models/vc/vevo/config", exist_ok=True)
config_files = {
"Vq32ToVq8192.json": "https://raw.githubusercontent.com/open-mmlab/Amphion/main/models/vc/vevo/config/Vq32ToVq8192.json",
"Vq8192ToMels.json": "https://raw.githubusercontent.com/open-mmlab/Amphion/main/models/vc/vevo/config/Vq8192ToMels.json",
"PhoneToVq8192.json": "https://raw.githubusercontent.com/open-mmlab/Amphion/main/models/vc/vevo/config/PhoneToVq8192.json",
"Vocoder.json": "https://raw.githubusercontent.com/open-mmlab/Amphion/main/models/vc/vevo/config/Vocoder.json"
}
for filename, url in config_files.items():
target_path = f"./models/vc/vevo/config/{filename}"
if not os.path.exists(target_path):
try:
hf_hub_download(repo_id="Amphion/Vevo-configs", filename=filename, repo_type="dataset", local_dir="./models/vc/vevo/config/")
except:
# 如果从Hugging Face下载失败,创建一个占位符文件
with open(target_path, 'w') as f:
f.write('{}')
print(f"无法下载配置文件 {filename},已创建占位符。请手动添加配置。")
def init_voice_conversion_pipeline(self):
"""初始化语音转换管道"""
if "voice" not in self.pipelines:
# 内容标记器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["tokenizer/vq32/*"],
)
content_tokenizer_ckpt_path = os.path.join(
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
# 内容-风格标记器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 自回归变换器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
# 流匹配变换器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 声码器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 创建推理管道
self.pipelines["voice"] = VevoInferencePipeline(
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=self.config_paths["vq32tovq8192"],
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=self.config_paths["vq8192tomels"],
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=self.config_paths["vocoder"],
vocoder_ckpt_path=vocoder_ckpt_path,
device=self.device,
)
return self.pipelines["voice"]
def init_timbre_pipeline(self):
"""初始化音色转换管道"""
if "timbre" not in self.pipelines:
# 内容-风格标记器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["tokenizer/vq8192/*"],
)
tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 流匹配变换器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 声码器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 创建推理管道
self.pipelines["timbre"] = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=tokenizer_ckpt_path,
fmt_cfg_path=self.config_paths["vq8192tomels"],
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=self.config_paths["vocoder"],
vocoder_ckpt_path=vocoder_ckpt_path,
device=self.device,
)
return self.pipelines["timbre"]
def init_tts_pipeline(self):
"""初始化文本转语音管道"""
if "tts" not in self.pipelines:
# 内容-风格标记器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 自回归变换器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
# 流匹配变换器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 声码器
local_dir = snapshot_download(
repo_id=REPO_ID,
repo_type="model",
cache_dir=CACHE_DIR,
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 创建推理管道
self.pipelines["tts"] = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=self.config_paths["phonetovq8192"],
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=self.config_paths["vq8192tomels"],
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=self.config_paths["vocoder"],
vocoder_ckpt_path=vocoder_ckpt_path,
device=self.device,
)
return self.pipelines["tts"]
def vevo_voice(self, content_audio, reference_audio):
"""语音转换功能"""
pipeline = self.init_voice_conversion_pipeline()
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as content_file, \
tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as reference_file, \
tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as output_file:
content_path = content_file.name
reference_path = reference_file.name
output_path = output_file.name
# 保存上传的音频文件
content_audio.save(content_path)
reference_audio.save(reference_path)
# 执行语音转换
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=content_path,
src_text=None,
style_ref_wav_path=reference_path,
timbre_ref_wav_path=reference_path,
)
save_audio(gen_audio, output_path=output_path)
return output_path
def vevo_style(self, content_audio, style_audio):
"""风格转换功能"""
pipeline = self.init_voice_conversion_pipeline()
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as content_file, \
tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as style_file, \
tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as output_file:
content_path = content_file.name
style_path = style_file.name
output_path = output_file.name
# 保存上传的音频文件
content_audio.save(content_path)
style_audio.save(style_path)
# 执行风格转换
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=content_path,
src_text=None,
style_ref_wav_path=style_path,
timbre_ref_wav_path=content_path,
)
save_audio(gen_audio, output_path=output_path)
return output_path
def vevo_timbre(self, content_audio, reference_audio):
"""音色转换功能"""
pipeline = self.init_timbre_pipeline()
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as content_file, \
tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as reference_file, \
tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as output_file:
content_path = content_file.name
reference_path = reference_file.name
output_path = output_file.name
# 保存上传的音频文件
content_audio.save(content_path)
reference_audio.save(reference_path)
# 执行音色转换
gen_audio = pipeline.inference_fm(
src_wav_path=content_path,
timbre_ref_wav_path=reference_path,
flow_matching_steps=32,
)
save_audio(gen_audio, output_path=output_path)
return output_path
def vevo_tts(self, text, ref_audio, src_language, ref_language, ref_text):
"""文本转语音功能"""
pipeline = self.init_tts_pipeline()
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as ref_file, \
tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as output_file:
ref_path = ref_file.name
output_path = output_file.name
# 保存上传的音频文件
ref_audio.save(ref_path)
# 执行文本转语音
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=None,
src_text=text,
style_ref_wav_path=ref_path,
timbre_ref_wav_path=ref_path,
style_ref_wav_text=ref_text if ref_text else None,
src_text_language=src_language,
style_ref_wav_text_language=ref_language,
)
save_audio(gen_audio, output_path=output_path)
return output_path
def create_interface():
app = VevoGradioApp()
with gr.Blocks(title="Vevo 语音转换演示") as demo:
gr.Markdown("# Vevo 语音转换模型演示")
gr.Markdown("Vevo是一个强大的语音转换模型,支持语音转换、风格转换、音色转换和文本转语音功能。")
with gr.Tab("语音转换"):
gr.Markdown("## 语音转换 (VevoVoice)")
gr.Markdown("将内容音频的内容转换为参考音频的风格和音色。")
with gr.Row():
content_audio_voice = gr.Audio(label="内容音频", type="filepath")
reference_audio_voice = gr.Audio(label="参考音频", type="filepath")
voice_btn = gr.Button("转换")
voice_output = gr.Audio(label="转换结果")
voice_btn.click(fn=app.vevo_voice, inputs=[content_audio_voice, reference_audio_voice], outputs=voice_output)
with gr.Tab("风格转换"):
gr.Markdown("## 风格转换 (VevoStyle)")
gr.Markdown("将内容音频的风格转换为参考音频的风格,保留原始音色。")
with gr.Row():
content_audio_style = gr.Audio(label="内容音频", type="filepath")
style_audio = gr.Audio(label="风格参考音频", type="filepath")
style_btn = gr.Button("转换")
style_output = gr.Audio(label="转换结果")
style_btn.click(fn=app.vevo_style, inputs=[content_audio_style, style_audio], outputs=style_output)
with gr.Tab("音色转换"):
gr.Markdown("## 音色转换 (VevoTimbre)")
gr.Markdown("将内容音频的音色转换为参考音频的音色,保留内容和风格。")
with gr.Row():
content_audio_timbre = gr.Audio(label="内容音频", type="filepath")
reference_audio_timbre = gr.Audio(label="音色参考音频", type="filepath")
timbre_btn = gr.Button("转换")
timbre_output = gr.Audio(label="转换结果")
timbre_btn.click(fn=app.vevo_timbre, inputs=[content_audio_timbre, reference_audio_timbre], outputs=timbre_output)
with gr.Tab("文本转语音"):
gr.Markdown("## 文本转语音 (VevoTTS)")
gr.Markdown("将输入文本转换为语音,使用参考音频的风格和音色。")
text_input = gr.Textbox(label="输入文本", lines=3)
with gr.Row():
ref_audio_tts = gr.Audio(label="参考音频", type="filepath")
src_language = gr.Dropdown(["en", "zh", "ja", "ko"], label="源文本语言", value="en")
with gr.Row():
ref_language = gr.Dropdown(["en", "zh", "ja", "ko"], label="参考文本语言", value="en")
ref_text = gr.Textbox(label="参考文本(可选)", lines=2)
tts_btn = gr.Button("生成")
tts_output = gr.Audio(label="生成结果")
tts_btn.click(fn=app.vevo_tts, inputs=[text_input, ref_audio_tts, src_language, ref_language, ref_text], outputs=tts_output)
gr.Markdown("## 关于")
gr.Markdown("本演示基于 [Vevo模型](https://huggingface.co/amphion/Vevo),由[Amphion](https://github.com/open-mmlab/Amphion)开发。")
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|